【题目】如图,在△ABC中,AB=BC=10,tan∠ABC=,点P是边BC上的一点,M是线段AP上一点,线段PM绕点P顺时针旋转90°得线段PN,设BP=t.
(1)如图①,当点P在点B,点M是AP中点时,试求AN的长;
(2)如图②,当=时,
①求点N到BC边的距离(用含t的代数式表示);
②当点P从点B运动至点C时,试求点N运动路径的长.
【答案】(1);(2)①当0≤t≤6时,,当6≤t≤10时,;②
【解析】
(1)根据直角三角形中的勾股定理进行解答即可;
(2)①分0≤t≤6和6≤t≤10两种情况,利用相似三角形进行解答;
②利用勾股定理进行计算即可.
(1)∵在Rt△ABN中,∠ABN=90°,AB=10,
∴BN=BM=AB=5,
∴AN==;
(2)①(Ⅰ)当0≤t≤6时(如图①),
图①图②
如解图:过点A作AE⊥BC于点E,过点N作NF⊥BC于点F,
∵tan∠ABC==,设AE=4x,则BE=3x,
在Rt△ABE中,∠AEB=90°,
∴AB2=AE2+BE2,102=(3x)2+(4x)2,
解得:x=2,∴AE=8,BE=6
当0≤t≤6时.
∵∠AEP=∠PFN=90°,∠APE+∠FPN=90°,∠APF+∠PAE=90°,
∴∠PAE=∠FPN,
∴△APE∽△PNF,
∵=,
∴===,
∴;
(Ⅱ)当6≤t≤10时,
同理可得:
②如图②点N的运动路径是一条线段,
当P与O重合时,FN=,PF=2,
当P与C重合时,F′N′=1,CF′=2,
∴点N的路径长NN′==.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(﹣2,3)
(1)求一次函数和反比例函数的解析式;
(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=ax2-2amx+am2+4,直线y2=kx-km+4,其中a≠0,a、k、m是常数.
(1)抛物线的顶点坐标是______,并说明上述抛物线与直线是否经过同一点(说明理由);
(2)若a<0,m=2,t≤x ≤t+2,y1的最大值为4,求t的范围;
(3)抛物线的顶点为P,直线与抛物线的另一个交点为Q,对任意的m值,若1≤k≤4,线段PQ(不包括端点)上至少存在两个横坐标为整数的点,求a的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4张卡片,卡片上分別标有数字1、﹣2、3、﹣4,这些卡片除数字外都相同.王兴从口袋中随机抽取一张卡片,钟华从剩余的三张卡片中随机抽取一张,求两张卡片上数字之积.
(1)请你用画树状图或列表的方法,列出两人抽到的数字之积所有可能的结果.
(2)求两人抽到的数字之积为正数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,点E、F分别在边CD、AB上,且满足CE=AF.
(1)求证:△ADE≌△CBF;
(2)连接AC,若AC恰好平分∠EAF,试判断四边形AECF为何种特殊的四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.
(1)如图1,P为AB边上一点,以PD,PC为边作平行四边形PCQD,过点Q作QH⊥BC,交BC的延长线于H.求证:△ADP≌△HCQ;
(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE.请问对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
(3)如图2,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE,PB为边作平行四边形PBQE.请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于函数(a是常数),有下列说法:
①函数图象与坐标轴总有三个不同的交点;
②当x<1时,不是y随x的增大而增大就是y随x的增大而减小;
③若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.
其中错误的说法是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中抛物线y=(x+1)(x﹣3)与x轴相交于A、B两点,若在抛物线上有且只有三个不同的点C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面积都等于m,则m的值是( )
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某区2014年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表:
成绩等级 | A | B | C | D |
人数 | 60 | 10 |
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有______ 名,成绩为B类的学生人数为______ 名,C类成绩所在扇形的圆心角度数为______
(2)请补全条形统计图;
(3)根据抽样调查结果,请估计该区约5000名八年级学生体育测试成绩为D类的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com