精英家教网 > 初中数学 > 题目详情

【题目】某中学组织学生到离学校15千米的兴化生态园进行春季社会实践活动,先遣队与大队同时出发,先遣队的速度是大队速度的1.2倍,结果先遣队比大队早到30分钟,求先遣队的速度和大队速度.

【答案】先遣队和大队的速度分别是6千米/时,5千米/时.

【解析】分析:先设出大队速度和先遣队的速度,利用二者的时间关系,列分式方程,最后要检验.

详解:

解:设大队的速度为x千米/时,则先遣队的速度是1.2x千米/时,

根据题意有

解得:x=5

经检验:x=5是原方程的解

1.2x=1.2×5=6

答:先遣队和大队的速度分别是6千米/时,5千米/时.

点睛:涉及追击问题的分式方程的应用题,应该注意速度越大的,耗时越少,速度越小的,耗时越多,列式时要注意大小关系,另外分式方程应用题也需要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4 ,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.

(1)求AP的长;
(2)求证:点P在∠MON的平分线上.
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.
①当AB⊥OP时,请直接写出四边形CDEF的周长的值;
②若四边形CDEF的周长用t表示,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE∥BF∠1与∠2互补.

1)试说明:FG∥AB;

2)若∠CFG=60°∠2=150°,则DEAC垂直吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队(有甲、乙两组)承接了世界园艺博览会的一项小型工程任务,这项任务规定在若干天内完成.已知甲组单独完成这项工程所需时间比规定时间多20天,乙组单独完成这项工程所需时间比规定时间多10天.如果甲、乙两组先合作15天,剩下的由甲单独做,则正好如期完成,那么规定的时间是多少天?(列方程解应用题)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某班研究性学习小组在一次综合实践活动中发现如下问题:在楼底的B处测得河对岸大厦上悬挂的条幅底端D的仰角为26°,在楼顶A处测得条幅顶端C的仰角为50°.若楼AB高度为18米,条幅CD长度为46米,请你帮助他们求出楼与大厦之间的距离BE及大厦的高度CE.(参考数据:sin26°≈0.44,sin50°≈0.77,tan26°≈0.49,tan50°≈1.19).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB'C',若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是( )

A.
π
B.
π
C.2π
D.4π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠形ABCD的一边AD,点D落在BC边上的点F处,AE是折痕,已知AB=8cmBC=10cm.则CE=__cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点.P到x轴的距离为 ,到y轴的距离为1.点C关于直线l的对称点为A,连接AC交直线l于B.

(1)求抛物线的表达式;
(2)直线y= x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y= x+m的表达式;
(3)若N为平面直角坐标系内的点,在直线y= x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC各顶点的坐标分A(-2,-2),B(-4,-1),C(-4,-4).

(1)作出△ABC关于原点O成中心对称的△A1B1C1

(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在

△A1B1C1的内部(不包括顶点和边界),求a的取值范围.

查看答案和解析>>

同步练习册答案