【题目】如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.
(1)求证:△ABE∽△FDE;
(2)当BE=3DE时,求tan∠1的值.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)根据正方形的性质得到AB=BC,∠ABE=∠CBE=∠FDE=45°,根据全等三角形的性质得到∠BAE=∠ECB,等量代换得到∠BAE=∠DFE,即可得到结论;
(2)连接AC交BD于O,设正方形ABCD的边长为a,根据勾股定理得到BD=a,BO=OD=OC=a,根据已知条件得到OE=OD=a,然后根据三角函数的定义得到结论.
试题解析:(1)证明:在正方形ABCD中,
∵AB=BC,
∠ABE=∠CBE=∠FDE=45°,
在△ABE与△CBE中,
∴△ABE≌△CBE,
∴∠BAE=∠ECB,
∵AD∥BC,∴∠DFE=∠BCE,
∴∠BAE=∠DFE,
∴△ABE∽△FDE;
(2)连接AC交BD于O,
设正方形ABCD的边长为a,
∴BD=a,BO=OD=OC=a,
∵BE=3DE,
∴OE=OD=a,
∴tan∠1=tan∠OEC==2.
科目:初中数学 来源: 题型:
【题目】如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(9,3)与(2019,2019)表示的两个数的积是( )
A.1B.2C.3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平。并燕、雀重一斤。问燕,雀一枚各重几何?”译文:“今有只雀、只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤。问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分.
(1)求a和b的值;
(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)如图①,点在小正方形格点上,在图①中作出点关于直线的对称点,连接、、、,并直接写出四边形的周长;
(2)在图②中画出一个以线段为一条对角线、面积为15的菱形,且点和点均在小正方形的顶点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(-5,0),B(-1,4)
(1)求直线AB的表达式;
(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需要将方向调整到与出发时一致,则方向的调整应为( )
A.左转80°B.右转80°C.左转100°D.右转100°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com