【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平。并燕、雀重一斤。问燕,雀一枚各重几何?”译文:“今有只雀、只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤。问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
科目:初中数学 来源: 题型:
【题目】已知,点E在正方形的边上(不与点B,C重合),是对角线,延长到点F,使,过点E作的垂线,垂足为G,连接,.
(1)根据题意补全图形,并证明;
(2)①用等式表示线段与的数量关系,并证明;
②用等式表示线段,,之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“数学运算”是数学学科核心素养之一,某校对七年级学生“数学运算能力”情况进行调研,从该校360名七年级学生中抽取了部分学生进行运算能力测试井进行分析,成绩分为A、B、C三个层次,绘制了频数分布表(如下),请根据图表信息解答下列问题:
(1)补全频数分布;
(2)如果成绩为A等级的同学属于优秀,请你估计该校七年级约有多少人达到优秀水平?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
探究一:如图1.在△ABC中,已知O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现.理由如下:
∵BO和CO分别是∠ABC与∠ACB的平分线,
∴,;
∴,
∴
(1)探究二:如图2中,已知O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?并说明理由.
(2)探究二:如图3中,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区举行“互联网+”征文比赛,已知每篇参赛征文成绩记分,组委会从篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中的值是 ;
(2)请求出的值,再补全征文比赛成绩频数分布直方图;
(3)若绘制扇形统计图,分别计算分数段,所对应扇形的圆心角度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.
(1)求证:△ABE∽△FDE;
(2)当BE=3DE时,求tan∠1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
(1)天天同学看过图形后立即口答出:∠APC=110°,请你补全他的推理依据.
如图2,过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD.(___)
∴∠A+∠APE=180°.
∠C+∠CPE=180°.(___)
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.(___)
问题迁移:
(2)如图3,AD∥BC,当点P在A. B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由。
(3)在(2)的条件下,如果点P在A. B两点外侧运动时(点P与点A. B. O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)操作发现:
如图①'在正方形ABCD中,过A点有直线AP,点B关于AP的对称点为E,连接DE交AP于点F,当∠BAP=20°时,则∠AFD= °;当∠BAP=α°(0<α<45°)时,则∠AFD= °;猜想线段DF, EF, AF之间的数量关系:DF-EF= AF(填系数);
(2)数学思考:
如图②,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他条件不变,则∠AFD= °;线段DF, EF, AF之间的数量关系是否发生改变,若发生改变,请写出数量关系并说明理由;
(3)类比探究:
如图③,若将“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他条件不变,则∠AFD= °;请直接写出线段DF,EF,AF之间的数量关系: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com