【题目】如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
【答案】
【解析】
设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k, 2ay=k, 根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.
解:设B的坐标为(2a,2b), 则M点坐标为(a,b),
∵M在AC上,
∴ab=k(k>0),
设E点坐标为(x,2b),D点坐标为(2a,y),
则2bx=k, 2ay=k,
∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
即4k- (k+k)=9,
解得k=3,
∵2bx×2ay=4abxy=k2=9,
∴4abxy=9,
解得:xy=,
则S△BED=BE×BD=
,
∴S△ODE =S四边形ODBE -S△BED=9-
科目:初中数学 来源: 题型:
【题目】如图,将一张正三角形纸片剪成四个小正三角形,得到个小正三角形,称为第一次操作; 然后,将其中的一个正三角形再剪成四个小正三角形,共得到个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到个小正三角形,称为第三次操作;…,根据以上操作,若要得到个小正三角形,则需要操作的次数是__________次.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点在数轴上分别对应的数为,则的长度可以表示为.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动个单位长度到达点,再向右移动个单位长度到达点,然后向右移动个单位长度到达点.
请你在图②的数轴上表示出三点的位置.
若点以每秒个单位长度的速度向左移动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右移动,设移动时间为秒.
①当时,求和的长度;
②试探究:在移动过程中,的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A. 如图1,展开后测得∠1=∠2
B. 如图2,展开后测得∠1=∠2且∠3=∠4
C. 如图3,测得∠1=∠2
D. 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图像与轴交于点,一次函数的图像过点,且与轴及的图像分别交于点、,点坐标为.
(1)求n的值及一次函数的解析式.
(2)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 以OC为边作等边三角形OCD,连接AD.
(1)当α=150°时,试判断△AOD的形状,并说明理由;
(2)探究:当a为多少度时,△AOD是等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com