精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A,点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2

(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;

(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB与AC相交于点Q.若AB= ,设AP=x,求y关于x的函数关系式.

【答案】
(1)解:∵将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,

∴∠APA1=∠BPB1=α,AP=A1P,BP=B1P,

∴∠AA1P=∠A1AP= = ,∠BB1P=∠B1BP= =

∴∠PAA1=∠PBB1


(2)解:假设在α角变化的过程中,存在△BEF与△AEP全等,

∵△BEF与△AEP全等,

∴AE=BE,

∴∠ABE=∠BAE=β,

∵AP=A1P,

∴∠A1AP=∠AA1P=

∵AB=BC,∠ABC=90°,

∴∠BAC=45°,

∴β+ =45°,

∴α﹣2β=90°


(3)解:当α=90°时,

∵AP=A1P,BP=B1P,∠APA1=∠BPB2=90°,

∴∠A=∠PBB1=45°,

∵∠A=∠C,∠AQB=∠C+∠QBC=45°+∠QBC=∠PBC,

∴△ABQ∽△CPB,

∵AB=

∴y=


【解析】(1)将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,根据旋转的性质得到对应角相等对应边相等,求∠PAA1=∠PBB2;(2)在α角变化的过程中,存在△BEF与△AEP全等,得到对应角相等对应边相等,根据三角形内角和定理求出α﹣2β的值;(3)当α=90°时,根据旋转的性质得到△ABQ∽△CPB,求出比例,得到AB的值,求出y关于x的函数关系式.
【考点精析】本题主要考查了函数关系式的相关知识点,需要掌握用来表示函数关系的数学式子叫做函数解析式或函数关系式才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,若存在一个内角角度,是另外一个内角角度的倍(为大于1的正整数),则称倍角三角形.例如,在中,,可知,所以3倍角三角形.

1)在中,,则________倍角三角形;

2)若3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的,求的最小内角.

3)若2倍角三角形,且,请直接写出的最小内角的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

⑴请画出△ABC关于y轴对称的△A’B’C’(其中A’,B’,C’分別是A,B,C的对应点,不写画法);

⑵直接写出A’,B’,C’三点的坐标:A’ ( ),B’( ),C’( );

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AEBAC的角平分线,ADBC边上的高,且B 40, C 60,CADEAD的度数。6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.

(1)求抛物线的解析式;
(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;
(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=110°,在边AN上取B,C,使AB=BC.点P为边AM上一点,将△APB沿PB折叠,使点A落在角内点E处,连接CE,则∠BPE+∠BCE=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,对角线ACBD相较于点O,要使ABCD为矩形,需添加下列的一个条件是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.

请根据图中提供的信息,解答下面的问题:

(1)此次共调查了 名学生,型统计图中“艺术鉴赏”部分的圆心角是 度.

(2)请把这个条形统计图补充完整.

(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.

查看答案和解析>>

同步练习册答案