精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC=90°,ADBC,垂足为D.

(1)求作∠ABC的平分线(要求:尺规作图,保留作图痕迹,不写作法);

(2)若∠ABC的平分线分别交AD,ACP,Q两点,证明:AP=AQ.

【答案】(1)(2)见解析

【解析】试题分析:(1作出角平分线BQ即可.

2)根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=PBD再由∠BPD=APQ可知∠APQ=AQP据此可得出结论.

试题解析:(1BQ就是所求的∠ABC的平分线PQ就是所求作的点.

2证明ADBC∴∠ADB=90°,∴∠BPD+∠PBD=90°.

∵∠BAC=90°,∴∠AQP+∠ABQ=90°.

∵∠ABQ=PBD∴∠BPD=AQP

∵∠BPD=APQ∴∠APQ=AQPAP=AQ

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=2,点E、F都对角线AC上,且AE=EF=FC,则线段BE和DF的距离为(
A.
B.1
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+3分别交x,y轴于点D,C,点B在x轴上,OB=OC,过点B作直线m∥CD.点P、Q分别为直线m和直线CD上的动点,且点P在x轴的上方,满足∠POQ=45°

(1)则∠PBO=度;
(2)问:PBCQ的值是否为定值?如果是,请求出该定值;如果不是,请说明理由;
(3)求证:CQ2+PB2=PQ2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:

∵∠1=∠2(已知),

∴AC∥DF(A.同位角相等,两直线平行),

∴∠3=∠5(B.内错角相等,两直线平行).

∵∠3=∠4(已知)

∴∠5=∠4(C.等量代换),

∴BC∥EF(D.内错角相等,两直线平行).

上述过程中判定依据错误的是(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为(
A.5
B. πcm2
C. πcm2
D.5πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 , 并把条形统计图补充完整;
(2)扇形统计图中m= , n= , 表示“足球”的扇形的圆心角是度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线ACBD互相垂直,若AB=3,BC=4,CD=5,则AD的长为(  )

A. 3 B. 4 C. 2 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC和BD相交于点O,过O作EF⊥AC,交AD于E,交BC于F,连接AF、CE.
(1)求证:四边形AECF是菱形
(2)若AB=3,BC=4,则菱形AECF的周长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B′;
(2)写出点A′,C′,D′的坐标;
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.

查看答案和解析>>

同步练习册答案