精英家教网 > 初中数学 > 题目详情
15.乘法公式的探究及应用:
(1)如图1所示,阴影部分的面积是a2-b2(写成平方差的形式)

(2)若将图1中的阴影部分剪下来,拼成如图2所示的长方形,此长方形的面积是(a+b)(a-b)(写成多项式相乘的形式).
(3)比较两图的阴影部分的面积,可以得到乘法公式:(a+b)(a-b)=a2-b2
(4)应用所得的公式计算:2(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{14}}$.

分析 (1)根据面积的和差,可得答案;
(2)根据矩形的面积公式,可得答案;
(3)根据图形割补法,面积不变,可得答案;
(4)根据平方差公式计算即可.

解答 解:(1)a2-b2
(2)(a-b)(a+b);
(3)(a-b)(a+b)=a2-b2
(4)2(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{14}}$
=4(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{14}}$
=4(1-$\frac{1}{{2}^{16}}$)+$\frac{1}{{2}^{14}}$
=4-$\frac{1}{{2}^{14}}$+$\frac{1}{{2}^{14}}$
=4.

点评 本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知:实数x、y满足$\sqrt{x-y+8}+(y+1)^{2}$=0.
(1)求x与y的值;
(2)求xy的平方根及x-y的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图:在△ABC中,MN∥BC,若BM=4AM,MN=1,则BC的长是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,正方形网格中的每个小正方形边长都是1,请在图中画出△ABC使得A、B、C三点都在小正方形的顶点且AB=AC=$\sqrt{5}$,BC=$\sqrt{2}$,并求出所画三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2-$\frac{7}{3}x+c$的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.
(1)求这个二次函数的解析式及的m值;
(2)求∠ADO的余切值;
(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式(  )
A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)D.(a+b)(a-2b)=a2-ab-2b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在平面直角坐标系中,四边形OABC是边长为8的正方形,M(8,s)、N(t,8)分别是边AB、BC上的两个动点,且OM⊥MN,当ON最小时,s+t=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知$\frac{a+b}{3}$=$\frac{b+c}{4}$=$\frac{c+a}{5}$,求$\frac{a-b-c}{c-a+b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,一次函数y=-x+4的图象与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.
(1)写出点A的坐标;
(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.
(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是S1、S2,求$\frac{1}{S_1}+\frac{1}{S_2}$的值.

查看答案和解析>>

同步练习册答案