1£®Èçͼ£¬Ò»´Îº¯Êýy=-x+4µÄͼÏóÓëxÖá¡¢yÖá·Ö±ðÏཻÓÚµãA¡¢B£¬¹ýµãA×÷xÖáµÄ´¹Ïßl£¬µãPΪֱÏßlÉϵ͝µã£¬µãQΪֱÏßABÓë¡÷OAPÍâ½ÓÔ²µÄ½»µã£¬µãP¡¢QÓëµãA¶¼²»Öغϣ®
£¨1£©Ð´³öµãAµÄ×ø±ê£»
£¨2£©µ±µãPÔÚÖ±ÏßlÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚµãPʹµÃ¡÷OQBÓë¡÷APQÈ«µÈ£¿Èç¹û´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôµãMÔÚÖ±ÏßlÉÏ£¬ÇÒ¡ÏPOM=90¡ã£¬¼Ç¡÷OAPÍâ½ÓÔ²ºÍ¡÷OAMÍâ½ÓÔ²µÄÃæ»ý·Ö±ðÊÇS1¡¢S2£¬Çó$\frac{1}{S_1}+\frac{1}{S_2}$µÄÖµ£®

·ÖÎö £¨1£©½«y=0´úÈëy=-x+4£¬ÇóµÃxµÄÖµ£¬´Ó¶øµÃµ½µãAµÄ×ø±ê£»
£¨2£©Ê×Ïȸù¾ÝÌâÒâ»­³öͼÐΣ¬È»ºóÔÚRt¡÷BOAÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºABµÄ³¤¶È£¬È»ºóÓÉÈ«µÈÈý½ÇÐεÄÐÔÖÊÇóµÃQAµÄ³¤¶È£¬´Ó¶øµÃµ½BQµÄ³¤£¬È»ºó¸ù¾ÝPA=BQÇóµÃPAµÄ³¤¶È£¬´Ó¶ø¿ÉÇóµÃµãPµÄ×ø±ê£»
£¨3£©Ê×Ïȸù¾ÝÌâÒâ»­³öͼÐΣ¬ÉèAP=m£¬ÓÉ¡÷OAM¡×¡÷PAO£¬¿ÉÇóµÃAMµÄ³¤¶È£¬È»ºó¸ù¾Ý¹´¹É¶¨Àí¿ÉÇóµÃÁ½Ô²µÄÖ±¾¶£¨Óú¬mµÄʽ×Ó±íʾ£©£¬È»ºóÀûÓÃÔ²µÄÃæ»ý¹«Ê½ÇóµÃÁ½Ô²µÄÃæ»ý£¬×îºó´úÈëËùÇó´úÊýʽÇó½â¼´¿É£®

½â´ð ½â£¨1£©Áîy=0£¬µÃ£º-x+4=0£¬½âµÃx=4£¬
¼´µãAµÄ×ø±êΪ£¨4£¬0£©£»
£¨2£©´æÔÚ£®
ÀíÓÉ£ºµÚÒ»ÖÖÇé¿ö£¬ÈçÏÂͼһËùʾ£º

¡ß¡ÏOBA=¡ÏBAP£¬¡àËüÃÇÊǶÔÓ¦½Ç£¬
¡àBQ=PA£¬
½«x=0´úÈëy=-x+4µÃ£ºy=4£¬
¡àOB=4£¬
ÓÉ£¨1£©¿ÉÖªOA=4£¬
ÔÚRt¡÷BOAÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºAB=$\sqrt{O{B}^{2}+O{A}^{2}}$=4$\sqrt{2}$£®
¡ß¡÷BOQ¡Õ¡÷AQP£®
¡àQA=OB=4£¬BQ=PA£®
¡ßBQ=AB-AQ=4$\sqrt{2}$-4£¬
¡àPA=4$\sqrt{2}$-4£®
¡àµãPµÄ×ø±êΪ£¨4£¬4$\sqrt{2}$-4£©£»
µÚ¶þÖÖÇé¿ö£¬ÈçÏÂͼ¶þËùʾ£º

¡ß¡÷OQB¡Õ¡÷APQ£¬
¡àAQ=BO=4£¬AB=$\sqrt{{4}^{2}+{4}^{2}}=4\sqrt{2}$£¬BQ=AP£¬
¡àBQ=AB+AQ=$4\sqrt{2}+4$£¬
¡àAP=4$\sqrt{2}+4$£¬
¡àµãPµÄ×ø±êΪ£º£¨4£¬-4$\sqrt{2}-4$£©£»
ÓÉÉϿɵ㬵ãPµÄ×ø±êΪ£º£¨4£¬$4\sqrt{2}-4$£©»ò£¨4£¬$-4\sqrt{2}-4$£©£®
£¨3£©ÈçͼËùʾ£º
ÁîPA=a£¬MA=b£¬¡÷OAPÍâ½ÓÔ²µÄÔ²ÐÄΪO1£¬¡÷OAMµÄÍâ½ÓÔ²µÄÔ²ÐÄΪO2£¬
¡àOP2=OA2+PA2=42+a2=16+a2£¬OM2=OA2+MA2=42+b2=16+b2£¬
ÔÚRt¡÷POMÖУ¬PM2=OP2+OM2=a2+16+b2+16£¬
ÓÖ¡ßPM2=£¨PA+AM£©2=£¨a+b£©2=a2+2ab+b2£¬
¡àab=16£¬
¡ßO1A2=O1Q2+QA2=£¨$\frac{OA}{2}$£©2+£¨$\frac{PA}{2}$£©2=$\frac{1}{4}$a2+4£¬O2A2=O2N2+NA2=£¨$\frac{OA}{2}$£©2+£¨$\frac{MA}{2}$£©2=$\frac{1}{4}$b2+4£¬
¡àS1=¦Ð¡ÁO1A2=£¨$\frac{1}{4}$a2+4£©¦Ð£¬S2=¦Ð¡ÁO2A2=£¨$\frac{1}{4}$b2+4£©¦Ð£¬
¡à$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}$=$\frac{{S}_{1}+{S}_{2}}{{S}_{1}{S}_{2}}$=$\frac{¦Ð¡Á£¨\frac{1}{4}{a}^{2}+4£©+¦Ð¡Á£¨\frac{1}{4}{b}^{2}+4£©}{¦Ð¡Á£¨\frac{1}{4}{a}^{2}+4£©¡Á¦Ð¡Á£¨\frac{1}{4}{b}^{2}+4£©}$=$\frac{4}{¦Ð}$¡Á$\frac{{a}^{2}+{16+b}^{2}+16}{16{a}^{2}+16{b}^{2}+1{6}^{2}+1{6}^{2}}$=$\frac{1}{4¦Ð}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊÇÈ«µÈÈý½ÇÐεÄÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨ÒÔ¼°¹´¹É¶¨ÀíºÍÒ»´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬸ù¾ÝÌâÒâ»­³öͼÐΣ¬ÀûÓÃÈ«µÈÈý½ÇÐκÍÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨ÇóµÃAMºÍPAµÄ³¤¶ÈÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®³Ë·¨¹«Ê½µÄ̽¾¿¼°Ó¦Óãº
£¨1£©Èçͼ1Ëùʾ£¬ÒõÓ°²¿·ÖµÄÃæ»ýÊÇa2-b2£¨Ð´³Éƽ·½²îµÄÐÎʽ£©

£¨2£©Èô½«Í¼1ÖеÄÒõÓ°²¿·Ö¼ôÏÂÀ´£¬Æ´³ÉÈçͼ2ËùʾµÄ³¤·½ÐΣ¬´Ë³¤·½ÐεÄÃæ»ýÊÇ£¨a+b£©£¨a-b£©£¨Ð´³É¶àÏîʽÏà³ËµÄÐÎʽ£©£®
£¨3£©±È½ÏÁ½Í¼µÄÒõÓ°²¿·ÖµÄÃæ»ý£¬¿ÉÒԵõ½³Ë·¨¹«Ê½£º£¨a+b£©£¨a-b£©=a2-b2£®
£¨4£©Ó¦ÓÃËùµÃµÄ¹«Ê½¼ÆË㣺2£¨1+$\frac{1}{2}$£©£¨1+$\frac{1}{{2}^{2}}$£©£¨1+$\frac{1}{{2}^{4}}$£©£¨1+$\frac{1}{{2}^{8}}$£©+$\frac{1}{{2}^{14}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¹ýÔ²OÄÚÒ»µãPµÄ×µÄÏÒ£¬×î¶ÌÏҵij¤¶È·Ö±ðÊÇ8cm£¬6cm£¬ÔòOP=$\sqrt{7}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³µØÏ³µ¿â³ö¿Ú´¦°²×°ÁË¡°Á½¶ÎʽÀ¸¸Ë¡±£¬Èçͼ1Ëùʾ£¬µãAÊÇÀ¸¸Ëת¶¯µÄÖ§µã£¬µãEÊÇÀ¸¸ËÁ½¶ÎµÄÁª½áµã£®µ±³µÁ¾¾­¹ýʱ£¬À¸¸ËAEF×î¶àÖ»ÄÜÉýÆðµ½Èçͼ2ËùʾµÄλÖã¬ÆäʾÒâͼÈçͼ3Ëùʾ£¨À¸¸Ë¿í¶ÈºöÂÔ²»¼Æ£©£¬ÆäÖÐAB¡ÍBC£¬EF¡ÎBC£¬¡ÏAEF=143¡ã£¬AB=AE=1.3Ã×£¬ÄÇôÊʺϸõØÏ³µ¿âµÄ³µÁ¾Ï޸߱êÖ¾ÅÆÎª¶àÉÙÃ×£¿£¨½á¹û¾«È·µ½0.1£®²Î¿¼Êý¾Ý£ºsin 37¡ã¡Ö0.60£¬cos 37¡ã¡Ö0.80£¬tan 37¡ã¡Ö0.75£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èôa+4$\sqrt{3}$=£¨m+n$\sqrt{3}$£©2£¬ÇÒa£¬m£¬n¾ùΪÕýÕûÊý£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÊÇ×ø±êÔ­µã£¬µãA¡¢BµÄ×ø±ê·Ö±ðΪA£¨0£¬4£©ºÍB£¨-2£¬0£©£¬Á¬½áAB£®
£¨1£©ÏÖ½«¡÷AOBÈÆµãA°´ÄæÊ±Õë·½ÏòÐýת90¡ãµÃµ½¡÷AO1B1£¬Çë»­³ö¡÷AO1B1£¬²¢Ö±½Óд³öµãB1¡¢O1µÄ×ø±ê£¨×¢£º²»ÒªÇóÖ¤Ã÷£©£»
£¨2£©Çó¾­¹ýB¡¢A¡¢O1ÈýµãµÄÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý¹ØÏµÊ½£¬²¢»­³öÅ×ÎïÏßµÄÂÔͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®2015Äê11ÔÂ11ÈÕ£¬Ò»ÄêÒ»¶È¡°Ë«Ê®Ò»¡±¹ºÎï¿ñ»¶ÈÕÊ¢´óÆôÄ»£¬¡°¶çÊÖµ³¡±ÃÇ·×·×Çå¿Õ×Ô¼ºµÄ¹ºÎï³µ£¬ÆäÖв»·¦³å¶¯Ïû·ÑÕߣ¬Ä³Ð£³õÈý1°àµÄÊýѧÐËȤС×éÒÔ¡°ÀíÐÔ¹ºÎ¾Ü¾ø³å¶¯Ïû·Ñ¡±ÎªÖ÷Ìâ¶ÔÏû·ÑÐÐΪ½øÐе÷²é£®°´¹ºÎïÊýÁ¿x£¨¼þ£©·ÖΪÒÔÏÂ4ÀࣺA£¨x¡Ü3£©£¬B£¨x=4£©£¬C£¨x=5£©£¬D£¨x¡Ý6£©£¬¸ù¾Ýµ÷²é½á¹ûÖÆ×÷ÁËÈçÏÂÁ½Í¼Í³¼ÆÍ¼£¨²»ÍêÕû£©£¬ÒÑÖª¹ºÂò4¼þÉÌÆ·µÄÏû·ÑÕßÖУ¬ÀíÐÔ¹ºÎïÈËÊýËùÕ¼±ÈÀýΪ80%£¬¸ù¾ÝͼÖÐÐÅÏ¢»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©±¾´Îµ÷²éµÄ×ÜÈËÊýΪ60ÈË£¬ÀíÐÔ¹ºÎïÕß¹ºÎï¼þÊýµÄÖÐλÊýΪ4¼þ£»
£¨2£©²¹È«ÌõÐÎͳ¼ÆÍ¼£»
£¨3£©Ð¡ÕÅÔÚ¡°Ë«Ê®Ò»¡±¹²¹º½ø7¼þÉÌÆ·£¬ÆäÖÐ4¼þ·þ×°¹º×Ô¡°ÌìèÉ̳ǡ±£¬3¼þµç×Ó²úÆ·¹º×Ô¡°¾©¶«É̳ǡ±£¬ÓÉÓÚ¹ºÂòʱ´æÔڳ嶯Ïû·Ñ£¬Ð¡Õžö¶¨´Ó·þ×°ºÍµç×Ó²úÆ·Öи÷Ëæ»úÑ¡Ôñ1¼þ½øÐÐÍË»õ£¬ÒÑÖª¡°ÌìèÉ̳ǡ±¹ºÂòµÄ4¼þ·þ×°Öнö1¼þÖ§³ÖÍË»õ£¬¡°¾©¶«É̳ǡ±¹ºÂòµÄµç×Ó²úÆ·Öнö2¼þÖ§³ÖÍË»õ£®ÇëÓÃÁбí»òÊ÷״ͼµÄ·½·¨£¬ÇóСÕÅÑ¡³öµÄ2¼þÉÌÆ·¾ùÄÜÍË»õµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆËãÌâ
£¨1£©-7+13-6+20                
£¨2£©£¨-49£©-£¨+91£©-£¨-5£©+£¨-9£©
£¨3£©£¨-18£©¡Á£¨-$\frac{1}{9}$+$\frac{2}{3}$-$\frac{1}{6}$£©                   
£¨4£©-24-$\frac{1}{2}$¡Á[5-£¨-3£©2]
£¨5£©£¨-12$\frac{2}{3}$£©¡Â1.4-£¨-8$\frac{1}{3}$£©¡Â£¨-1.4£©+9$\frac{1}{3}$¡Â1.4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¡÷ABCÖУ¬BC=4£¬¡ÏA=60¡ã£¬ÔòÕâ¸öÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµÊÇ4$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸