精英家教网 > 初中数学 > 题目详情
20.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式(  )
A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)D.(a+b)(a-2b)=a2-ab-2b2

分析 第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2-b2;第二个图形阴影部分是一个长是(a+b),宽是(a-b)的长方形,面积是(a+b)(a-b);这两个图形的阴影部分的面积相等.

解答 解:∵图甲中阴影部分的面积=a2-b2,图乙中阴影部分的面积=(a+b)(a-b),
而两个图形中阴影部分的面积相等,
∴阴影部分的面积=a2-b2=(a+b)(a-b).
故选:C.

点评 此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.已知方程$\frac{1}{2}$x+b=0的解是x=-2,下列可能为直线y=$\frac{1}{2}$x+b的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作EG∥BC分别交AB、AC于点E、G,若BE+CG=18,则线段EG的长为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若方程(a+2b-5)xy+x-2y3a-b=8是关于x、y的二元一次方程,则a、b的值分别为(  )
A.-1,2B.-1,-2C.1,-2D.1,2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.乘法公式的探究及应用:
(1)如图1所示,阴影部分的面积是a2-b2(写成平方差的形式)

(2)若将图1中的阴影部分剪下来,拼成如图2所示的长方形,此长方形的面积是(a+b)(a-b)(写成多项式相乘的形式).
(3)比较两图的阴影部分的面积,可以得到乘法公式:(a+b)(a-b)=a2-b2
(4)应用所得的公式计算:2(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)+$\frac{1}{{2}^{14}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AC是⊙O的直径,BC交⊙O于点D,E是$\widehat{CD}$的中点,连接AE交BC于点F,∠ABC=2∠EAC.
(1)求证:AB是⊙O的切线;
(2)若tanB=$\frac{4}{3}$,BD=6,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.据测定,海底扩张的速度是很缓慢的,在太平洋海底,某海沟的某处宽度为100米,某两侧的地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x年,海沟的宽度为y米.
(1)写出海沟扩张时间x年与海沟的宽度y之间的表达式;
(2)你能计算以下当海沟宽度y扩张到400米时需要多少年吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.
(1)若∠BAD=45°,求证:△ACD为等腰三角形;
(2)若△ACD为直角三角形,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)和B(-2,0),连结AB.
(1)现将△AOB绕点A按逆时针方向旋转90°得到△AO1B1,请画出△AO1B1,并直接写出点B1、O1的坐标(注:不要求证明);
(2)求经过B、A、O1三点的抛物线对应的函数关系式,并画出抛物线的略图.

查看答案和解析>>

同步练习册答案