精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,过原点的直线与反比例函数交于点,与反比例函数 交于点,过点轴的垂线,过点轴的垂线,两直线交于点,若的面积为,则的值为_______

【答案】-2

【解析】

A(a)B(b)ACx轴于点DBCy轴于点E,易得DAO~ EOB,从而得,进而得,由的面积为,得,进而得到关于的方程,即可求解.

A(a)B(b)ACx轴于点DBCy轴于点E,由题意得:k0a0b0

AD=OE=

ADOEODBE

∴∠DAO=EOB,∠AOD=OBE

DAO~ EOB

,即:,化简得:

的面积为

∴(b-a)(-=18,化简:

,即:

,解得:(不合题意,舍去),

=-2

故答案是:-2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店购进甲、乙两种型号的商品。每件甲种商品的进价比每件乙种商品的进价少2元,且用80元购进甲种商品的数量与用100元购进乙种商品的数量相同.

1)求甲、乙两种商品每件的进价各为多少元;

2)每件甲种商品售价为12元,每件乙种商品售价为15元,该超市本次购进甲种商品的数量比购进乙种商品的数量的3倍少5件,要使两种商品全部售出后所获总利润超过371元,求该超市本次至少购进乙种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(发现问题)

1)如图1,已知△CAB和△CDE均为等边三角形,DAC上,ECB上,易得线段ADBE的数量关系是   

2)将图1中的△CDE绕点C旋转到图2的位置,直线AD和直线BE交于点F

判断线段ADBE的数量关系,并证明你的结论;

2中∠AFB的度数是   

(探究拓展)

3)如图3,若△CAB和△CDE均为等腰直角三角形,∠ABC=∠DEC90°,ABBCDEEC,直线AD和直线BE交于点F,分别写出∠AFB的度数,线段ADBE间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,AB是⊙O的一条弦,AP是⊙O的切线.作BMAB并与AP交于点 M,延长MBAC于点E,交⊙O于点D,连接ADBC

1)求证:ABBE

2)若BE3OC,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强学生身体锻炼,某校开展体育大课间活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:

1)在这项调查中,共调查了_______名学生;

2)请将两个统计图补充完整;

3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知以的边为直径作的外接圆的平分线,交,过的延长线于

1)求证:切线;

2)若的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°,点DE分别是ABBC的中点,过点CCFAB,与DE的延长线并交于点F,连接BF

1)试判断四边形CDBF的形状,并说明理由;

2)若CD5sinCAB,过点CCHBF,垂足为H点,试求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)(1)如图1,在ABC中,点DEQ分别在ABACBC上,且DEBCAQDE于点P.求证:.

2如图,在ABC中,BAC=90°,正方形DEFG的四个顶点在ABC的边上,连接AGAF分别交DEMN两点.

如图2,若AB=AC=1,直接写出MN的长;

如图3,求证MN2=DM·EN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形对角线交于点边分别为边长作正方形正方形,连接

1)求证:

2)若,请求出的面积.

查看答案和解析>>

同步练习册答案