【题目】如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.
(1)求∠ADC的度数;
(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.
【答案】解:(1)作CE⊥AB交AB于点E,则∠AEC=90°,
∵AC=BC,
∴CE是AB的垂直平分线,
∴AE=BE=AB,
∵AB=2AD,
∴AE=AD=AB,
∵∠AC平分∠BAD,
∴∠EAC=∠DAC,
在△ADC和△AEC中,
,
∴△ADC≌△AEC,
∴∠ADC=∠AEC=90°;
(2)∵CE是AB的垂直平分线,
∴S△ACD=S△AEC ,
∵AB=2AD,CD=CE,
∴S△ACB=2S△ADC ,
∴四边形ABCD的面积=3S△ADC=3××5×12=90cm2 .
【解析】(1)作CE⊥AB交AB于点E,则∠AEC=90°,利用已知条件和全等三角形的判定方法可证明△ADC≌△AEC,利用全等三角形的性质即可得到∠ADC=∠AEC=90°;
(2)由(1)可知S△ACD=S△AEC , 再根据高相等的两个三角形面积比等于底之比可得S△ACB=2S△ADC , 进而四边形ABCD的面积=3S△ADC , 问题得解.
科目:初中数学 来源: 题型:
【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3 ;⑤S△AOC+S△AOB=6+ .其中正确的结论是( )
A.①②③⑤
B.①②③④
C.①②③④⑤
D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的( )
A.众数
B.方差
C.平均数
D.中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图“L”形的图形的面积有如下四种表示方法: ①a2﹣b2;②a(a﹣b)+b(a﹣b);③(a+b)(a﹣b); ④(a﹣b)2 .
其中正确的表示方法有( )
A.1种
B.2种
C.3种
D.4种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.
(1)求(﹣2)※3的值;
(2)若3※x=5※(x﹣1),求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com