精英家教网 > 初中数学 > 题目详情

【题目】请你把32、(﹣2)3、|﹣ |、﹣ 、0、﹣(﹣3)、﹣1.5这七个数按照从小到大,从左到右的顺序串成一个糖葫芦.

【答案】解:32=9,(﹣2)3=﹣8,|﹣ |= ,﹣ 、0、﹣(﹣3)=3、﹣1.5, 如图

【解析】根据乘方的意义,绝对值的性质、相反数的意义,可化简各数,根据正数大于零、负数小于零,可得答案.
【考点精析】根据题目的已知条件,利用绝对值和有理数大小比较的相关知识可以得到问题的答案,需要掌握正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;有理数比大小:1、正数的绝对值越大,这个数越大2、正数永远比0大,负数永远比0小3、正数大于一切负数4、两个负数比大小,绝对值大的反而小5、数轴上的两个数,右边的数总比左边的数大6、大数-小数 > 0,小数-大数 < 0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykxb的图象与反比例函数y (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点CPBx轴于点B,点A与点B关于y轴对称.

(1)求一次函数、反比例函数的解析式;

(2)求证:点C为线段AP的中点;

(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形,如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的材料: 如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.
请用上面的知识解答下面的问题:
如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm.

(1)请你在数轴上表示出A.B.C三点的位置:
(2)点C到点人的距离CA=cm;若数轴上有一点D,且AD=4,则点D表示的数为
(3)若将点A向右移动xcm,则移动后的点表示的数为;(用代数式表示)
(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒, 试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人去水果批发市场采购苹果,他看中了A、B两家苹果.这两家苹果品质都一样,零售价都为6元/千克,但批发价各不相同. A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的规定如表:

数量范围(千克)

0~500

500以上~1500

1500以上~2500

2500以上

格(元)

零售价的95%

零售价的85%

零售价的75%

零售价的70%

【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100﹣1500)】
根据上述信息,请解答下列问题:
(1)如果他批发1000千克苹果,则他在A 家批发需要元,在B家批发需要元;
(2)如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要元,在B家批发需要元(用含x的代数式表示);
(3)现在他要批发不超过1000千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,
∴(m﹣n)2+(n﹣4)2=0,又∵(m﹣n)2≥0,(n﹣4)2≥0,
, ∴n=4,m=4.
请解答下面的问题:
(1)已知x2﹣2xy+2y2+6y+9=0,求xy﹣x2的值;
(2)已知△ABC的三边长a、b、c都是互不相等的正整数,且满足a2+b2﹣4a﹣18b+85=0,求△ABC的最大边c的值;
(3)已知a2+b2=12,ab+c2﹣16c+70=0,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.
(1)求∠ADC的度数;
(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=α°,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则α的值是( )

A.15
B.30
C.45
D.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.
(1)求证:∠BDE=∠CEF;
(2)试判断△DEF的形状,并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AC=BC,AB=4,∠ACB=90°,以AB的中点D为圆心DC长为半径作圆DEF,设∠BDF=α(0°<α<90°),当α变化时图中阴影部分的面积为圆:∠EDF=90°,圆的面积=

查看答案和解析>>

同步练习册答案