【题目】如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.
(1)求证:∠BDE=∠CEF;
(2)试判断△DEF的形状,并简要说明理由.![]()
科目:初中数学 来源: 题型:
【题目】定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.
(1)求(﹣2)※3的值;
(2)若3※x=5※(x﹣1),求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知抛物线
与
轴交于A、B两点(点A在点B左侧),与
交于点C,抛物线对称轴与
轴交于点D,
为
轴上一点。
(1)写出点A、B、C的坐标(用
表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D、E重合),过P作
作
,判断
是否为定值,若是,请求出定值,若不是,请说明理由;
(3)如图②,将线段
绕点
顺时针旋转30°,与
相交于点
,连接
.点
是线段
的中点,连接
.若点
是线段
上一个动点,连接
,将△
绕点
逆时针旋转
得到△
,延长
交
于点
。若△
的面积等于△
的面积的
,求线段
的长.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)(+3.5)﹣1.4﹣(2.5)+(﹣4.6)
(2)[2﹣5×(﹣
) 2]÷(﹣
)
(3)[2
﹣(
+
﹣
)×24]÷5×(﹣1)2009
(4)﹣22+|5﹣8|+24÷(﹣3)× ![]()
(5)(xy2﹣x2y)﹣2( xy+xy2)+3x2y
(6)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com