【题目】如图,∠AOB=α°,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则α的值是( )
A.15
B.30
C.45
D.60
【答案】B
【解析】解:分别作点P关于OA、OB的对称点C、D,连接CD,
分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
∵点P关于OA的对称点为D,关于OB的对称点为C,
∴PM=DM,OP=OD,∠DOA=∠POA;
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD,∠AOB=∠COD,
∵△PMN周长的最小值是6cm,
∴PM+PN+MN=6,
∴DM+CN+MN=6,
即CD=6=OP,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°;
故选:B.
【考点精析】通过灵活运用轴对称-最短路线问题,掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n),交y轴于点B,交x轴于点D
(1)求反比例函数和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积;
(3)直接写kx+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知抛物线与轴交于A、B两点(点A在点B左侧),与交于点C,抛物线对称轴与轴交于点D, 为轴上一点。
(1)写出点A、B、C的坐标(用表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D、E重合),过P作作,判断是否为定值,若是,请求出定值,若不是,请说明理由;
(3)如图②,将线段绕点顺时针旋转30°,与相交于点,连接.点是线段的中点,连接.若点是线段上一个动点,连接,将△绕点逆时针旋转得到△,延长交于点。若△的面积等于△的面积的,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com