精英家教网 > 初中数学 > 题目详情

【题目】如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.

(1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示).

【答案】
(1)解:过点B作BE⊥AD于点E,

∵AB=40m,∠A=30°,

∴BE= AB=20m,AE= =20 m,

即点B到AD的距离为20m


(2)解:在Rt△ABE中,

∵∠A=30°,

∴∠ABE=60°,

∵∠DBC=75°,

∴∠EBD=180°﹣60°﹣75°=45°,

∴DE=EB=20m,

则AD=AE+EB=20 +20=20( +1)(m),

在Rt△ADC中,∠A=30°,

∴DC= =(10+10 )m.

答:塔高CD为(10+10 )m.


【解析】(1)通过作垂线,把30度角放在直角三角形中, 利用30度角的性质可求得 B到AD的距离 ;(2) 利用外角定理可∠EBD=45°,DE=EB=20m则AD=AE+EB,在Rt△ADC中,∠A=30°,DC= A D ,求出CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)发现问题:如图①平行四边形ABCD的对角线相交于点O,DEAC,CEBD,可知:四边形OCED是什么形(不需要证明).

(2)类比探究:如图②矩形ABCD的对角线相交于点O,DEAC,CEBD,四边形OCED是什么形,请说明理由;

(3)拓展应用:如图③,菱形ABCD的对角线相交于点O,ABC=60°,BC=4,DEACBC的延长线于点F,CEBD求四边形ABFD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,经过AC两点分别作AEBDCFBDEF为垂足.

1)求证:AED≌△CFB

2)求证:四边形AFCE是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,过点D作BA的平行线交AC于点O,过点A作BC的平行线交DO的延长线于点E,连接CE.

(1)求证:四边形ADCE是菱形;
(2)作出△ABC外接圆,不写作法,请指出圆心与半径;
(3)若AO:BD= :2,求证:点E在△ABC的外接圆上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB6,点E在边CD上,且CD3DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连结AGCF

1)求证:①ABGAFG BGGC

2)求FGC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数 yl= x ( x 0 ) , x > 0 )的图象如图所示,则结论: 两函数图象的交点A的坐标为(3 ,3 ) x > 3 时, x 1时, BC = 8

x 逐渐增大时, yl 随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图像经过点.

(1)k的值,并判断点是否在该反比例函数的图像上;

(2)该反比例函数图像在第______象限,在每个象限内,yx的增大而_______.

(3)时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD被分成四部分,其中△ABE、△ECF、△ADF的面积分别为2、3、4,则△AEF的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠A=30°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=84°,则∠EA度数为( )

A.54°B.81°C.108°D.114°

查看答案和解析>>

同步练习册答案