精英家教网 > 初中数学 > 题目详情

【题目】如图,已知反比例函数y=(x0)与正比例函数y=x(x0)的图象,点A(14),点A'(4b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为______

【答案】

【解析】

先根据点A的坐标求出反比例函数的解析式,然后求出点的坐标,由点B在直线上,设出点B的坐标为(a,a),从而利用平行四边形的性质可得到的坐标,因为在反比例函数图象上,将点代入反比例函数解析式中即可求出a的值,从而可确定点B的坐标.

∵反比例函数y= (x0)过点A(14)

k=1×4=4

∴反比例函数解析式为:y=

A'(4b)在反比例函数的图象上,

4b=4

解得:b=1

A'(41)

∵点B在直线y=x上,

∴设B点坐标为:(aa)

∵点A(14)A'(41)

A点向下平移3个单位,再向右平移3个单位,即可得到A'点.

∵四边形AA'B'B是平行四边形,

B点向下平移3个单位,再向右平移3个单位,即可得到B'(a+3a3)

∵点B'在反比例函数的图象上,

(a+3)(a3)=4

解得: (舍去)

B点坐标为:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园ABC(院墙 MN 长 25 米).现有 50米长的篱笆,请你设计一种围法(篱笆必须用完),使矩形花园的面积为300米 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论:

①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时y1>y2.

其中正确的结论是(  )

A. ①③④ B. ①③ C. ①②④ D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是等边ABC内的任一点,连接OA,OB,OC.

(1)如图1,已知AOB=150°,BOC=120°,将BOC绕点C按顺时针方向旋转60°得ADC.

DAO的度数是

②用等式表示线段OA,OB,OC之间的数量关系,并证明;

(2)设AOB=α,BOC=β.

①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;

②若等边ABC的边长为1,直接写出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=6AB⊥BCAD⊥CD∠BAD=60°,点MN分别在ABAD边上,若AMMB=ANND=12,则tan∠MCN=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校开展青少年科技创新比赛活动,“喜洋洋代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C,AC,甲的速度是乙的速度的1.5,t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:),d1,d2t的函数关系如图,试根据图象解决下列问题.

(1)填空乙的速度v2=________/;

(2)写出d1t的函数表达式;

(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知内接于的直径,,交的延长线于点

(1)的中点,连结,求证:的切线.

(2),求的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.

(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2

(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

同步练习册答案