精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B,C两点,且D,E分别为顶点.则下列结论:

①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时y1>y2.

其中正确的结论是(  )

A. ①③④ B. ①③ C. ①②④ D.

【答案】B

【解析】

把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.

抛物线y1=(x+1)2+1y2=a(x-4)2-3交于点A(1,3),
3=a(1-4)2-3,
解得:a=,故①正确;
过点EEFAC于点F,
E是抛物线的顶点,
AE=EC,E(4,-3),
AF=3,EF=6,
AE=,AC=2AF=6,
AC≠AE,故②错误;
y=3时,3=(x+1)2+1,
解得:x1=1,x2=-3,
B(-3,3),D(-1,1),
AB=4,AD=BD=2
AD2+BD2=AB2
∴③△ABD是等腰直角三角形,正确;
(x+1)2+1=(x-4)2-3时,
解得:x1=1,x2=37,
∴当37>x>1时,y1>y2,故④错误.
故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在某水果店进行了一次促销活动,一次性购买种水果的单价(元)与购买量(千克)的函数关系如图

1)当时,单价_______

2)求图中第段函数图象的解析式,并指出的取值范围

3)促销活动期间,张老师计划去该店买种水果10千克,那么张老师共需花费多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,,结论:①;②;③;④,其中正确的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣+mx+4m的图象与x轴交于AB两点(AB的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2D是抛物线的顶点.

1)求二次函数的表达式;

2)当﹣x1时,请求出y的取值范围;

3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,ODBCOD与半圆O交于点E,则下列结论中不一定正确的是(  )

A. ACBCB. BE平分∠ABCC. BECDD. D=A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,点PAC边上的一点,延长BP至点D,使得AD=AP,当ADAB时,过点DDEACE

(1)求证:∠CBP=ABP;

(2)ABBC=4AC=8.求AB的长度和DE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BAD=90°,点EBC的延长线上,且∠DEC=BAC.

(1)求证:DE是⊙O的切线;

(2)若ACDE,当AB=8,CE=2时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=(x0)与正比例函数y=x(x0)的图象,点A(14),点A'(4b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx-3的对称轴为直线x=1,交x轴于A,B两点,交y轴于C点,其中B点的坐标为(3,0).

(1)直接写出A点的坐标;

(2)求二次函数y=ax2+bx-3的解析式.

查看答案和解析>>

同步练习册答案