精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在ABCD中,E,F是对角线BD上的两点,则以下条件不能判断四边形AECF为平行四边形的是(
A.BE=DF
B.AF⊥BD,CE⊥BD
C.∠BAE=∠DCF
D.AF=CE

【答案】D
【解析】解:如图,连接AC与BD相交于O, 在ABCD中,OA=OC,OB=OD,
要使四边形AECF为平行四边形,只需证明得到OE=OF即可;
A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项错误;
B、若AF⊥BD,CE⊥BD,则可以利用“角角边”证明△ADF和△CBE全等,从而得到DF=BE,然后同A,故本选项错误;
C、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项错误;
D、AF=CE无法证明得到OE=OF,故本选项正确.
故选D.

【考点精析】根据题目的已知条件,利用平行四边形的判定与性质的相关知识可以得到问题的答案,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxcxy的值如下表:( )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

ax2bxc=0的一个根的范围是( )

A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,ACB=90°,点D为斜边AB的中点,BC=6,CD=5,过点A作AEAD且AE=AD,过点E作EF垂直于AC边所在的直线,垂足为点F,连接DF,请你画出图形,并直接写出线段DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.

(1)求证:△ACE≌△BCD;

(2)求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )

A.a3a=a3
B.(2a+b)2=4a2+b2
C.a8b÷a2=a4b
D.(﹣3ab32=9a2b6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在钝角△ABC中,点D是BC的中点,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,M、N分别为AB、AC的中点,连接DM、DN、DE、DF、EM、EF、FN.求证:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为直线AD上一点,射线OC,射线OB,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°.

(1)∠COD与∠AOB相等吗?请说明理由;
(2)试求∠AOC与∠AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要把1张50元的人民币兑换成面额为5元和10元的人民币,面值5元x张,面值10元y张,那么x与y间的关系为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC.求证:∠BAC=∠BFC.

查看答案和解析>>

同步练习册答案