精英家教网 > 初中数学 > 题目详情
(2013•黄陂区模拟)如图,PB为⊙0的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系是
EF2=4OD•OP
EF2=4OD•OP
并加以证明.
分析:(1)连接OB,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PB为圆的切线,得到OB垂直于BP,利用全等三角形的对应角相等及垂直的定义得到OA垂直于AP,即PA为圆O的切线;
(2)EF2=4DO•PO,理由为:由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
解答:(1)证明:连接OB,
∵PB与圆O相切,
∴PB⊥OB,即∠OBP=90°,
∵OP⊥AB,
∴D为AB中点,即OP垂直平分AB,
∴PA=PB,
∵在△OAP和△OBP中,
AP=BP
OP=OP
OA=OB

∴△OAP≌△OBP(SSS),
∴∠OAP=∠OBP=90°,
∴AP⊥OA,
则直线PA为圆O的切线;

(2)EF2=4DO•PO,理由为:
证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,
∴△OAD∽△OPA,
OA
OP
=
OD
OA
,即OA2=OD•OP,
∵EF为圆的直径,即EF=2OA,
1
4
EF2=OD•OP,即EF2=4OD•OP.
故答案为:EF2=4OD•OP
点评:此题考查了切线的判定与性质,相似及全等三角形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)用配方法求y=x2-2x-3的顶点坐标,变形正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)从4、5、6三个数中,任取两个不同的数字组成一个两位数,能被3整除的概率是
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知⊙O1的半径是13,⊙O2的半径是15,⊙O1和⊙O2交于A、B两点.AB=24,则O1O2的长度是
4或14
4或14

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)正△ABC的两边上的点M,N满足BM=AN,BN交于CN于点E
(1)求证:BM2=ME•MC;
(2)△BCE沿着BC向下翻折到△BCF,延长CF和BF交AB于P,交AC于K,若正△ABC边长是10,求BP•CK的值;
(3)当E为BN的中点时,
BM
MA
=
5
-1
2
5
-1
2
(直接写出比值)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知:抛物线y=x2+mx+n的顶点D(1,-4)抛物线与坐标轴的交点为A,B,C,
(1)求抛物线的解析式,并求出A,B,C,的坐标;
(2)作如图所示四个顶点在△ABC三边上的矩形EFGH.求矩形EFGH的最大面积;
(3)MN=
2
,MN是直线y=-x上的一条动线段,当四边形AMNC的周长最小时,求N的坐标.

查看答案和解析>>

同步练习册答案