【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为的中点,BE⊥CD垂足为E.
(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=,求OE的长度.
【答案】(1)45°; (2)见解析 (3)
【解析】(1)连接AD,由D为弧AB的中点,得到AD=BD ,根据圆周角定理即可得到结论;
(2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD,根据相似三角形的性质得到DE:AC=BE:BC,即可得出结论.
(3)连接CO,根据线段垂直平分线的判定定理得到OE垂直平分BC,由三角形的中位线到现在得到OF=AC,根据直角三角形的性质得到EF=BC,由勾股定理即可得到结论.
(1)解:连接AD,
∵D为弧AB的中点,∴AD=BD,
∵AB为直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°
∴∠DCB=∠DAB=45°;
(2)证明:∵BE⊥CD,又∵∠ECB=45°,∴∠CBE=45°,∴CE=BE,
∵四边形ACDB是圆O的内接四边形,∴∠A+∠BDC=180°,
又∵∠BDE+∠BDC=180°,∴∠A=∠BDE,
又∵∠ACB=∠BED=90°,∴△ABC∽△DBE,
∴DE:AC=BE:BC,∴DE:BE=AC:BC=1:2,
又∵CE=BE,∴DE:CE=1:2,∴D为CE的中点;
(3)解:连接CO,∵CO=BO,CE=BE,∴OE垂直平分BC,
设OE交BC于F,则F为BC中点,又∵O为AB中点,∴OF为△ABC的中位线,
∴OF=AC,
∵∠BEC=90°,EF为中线,∴EF=BC,
在Rt△ACB中,AC2+BC2=AB2,
∵AC:BC=1:2,AB=,∴AC=,BC=2
∴OE=OF+EF=.
科目:初中数学 来源: 题型:
【题目】在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是( )
A. ①② B. ①②④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD放置在直线l上(AB与直线l重合),AB=4,∠DAB=60°,将菱形ABCD沿直线l向右无滑动地在直线l上滚动,从点A离开出发点到点A第一次落在直线l上为止,点A运动经过的路径总长度为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数
C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com