精英家教网 > 初中数学 > 题目详情

【题目】如图,在 中, 平分 于点 .

(1)求 的度数.
(2)求证: .

【答案】
(1)解:∵
∴∠ABC=45°
∵BD平分∠ABC
∴∠ABD= ∠ABC=22.5°
在△ABD和△ECD中,∠E=∠A,∠CDE=∠BDA
∴∠ECD=∠ABD=22.5°
(2)证明:如图所示,延长BA,CE交于点F,
∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,
∴∠ABD=∠ACF, 又∵AB=AC,
在Rt△ABD和Rt△ACF中
∴Rt△ABD≌Rt△ACF,
∴BD=CF,
在Rt△FBE和Rt△CBE中 ∵BD平分∠ABC,
∴∠BCF=∠F, ∵∠BEC=90°
∴∠BEF=∠BEC=90°
∵BE=BE
∴Rt△FBE≌Rt△CBE
∴EF=EC,
∴CF=2CE,
即BD=2CE
【解析】(1)根据等腰直角三角形的性质及三角形内角和定理求出∠ABC的度数,再根据角平分线的定义求出∠ABD的度数,根据三角形内角和定理及对顶角的性质即可求出∠ECD 的度数。
(2)根据BD平分∠ABC及CE⊥BE,因此添加辅助线:延长BA,CE交于点F,先证明Rt△ABD≌Rt△ACF,得出BD=CF,再证明Rt△FBE≌Rt△CBE ,得出EF=EC,得出CF=2CE,从而证得BD=2CE。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.

下面是运用“截长法”证明CD=AB+BD的部分证明过程.

证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.

∵M是的中点,

∴MA=MC

任务:(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图(3),已知等边△ABC内接于⊙O,AB=2,D为⊙O上 一点, ,AE⊥BD与点E,则△BDC的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级组织学生参加夏令营,分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题:

报名人数分布直方图 报名人数扇形统计图
(1)求该年级报名参加本次活动的总人数;
(2)求该年级报名参加乙组的人数,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,那么,应从甲组抽调多少名学生到丙组?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题 :①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在 中, 的中点,点 上,点 上,且 .

(1)求证: .
(2)若 =2,求四边形 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,ACBC=1:2,点D的中点,BECD垂足为E

(1)求∠BCE的度数;

(2)求证:DCE的中点;

(3)连接OEBC于点F,若AB,求OE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.
原题:如图①,点 分别在正方形 的边 上, ,连接 ,则 ,试说明理由.

(1)思路梳理
因为 ,所以把 绕点 逆时针旋转90°至 ,可使 重合.因为 ,所以 ,点 共线.
根据 , 易证 , 得 .请证明.
(2)类比引申
如图②,四边形 中, ,点 分别在边 上, .若 都不是直角,则当 满足等量关系时, 仍然成立,请证明.

(3)联想拓展
如图③,在 中, ,点 均在边 上,且 .猜想 应满足的等量关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月,我市某中学举行了“爱我中国朗诵比赛”活动,根据学生的成绩划分为ABCD四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:

(1)参加朗诵比赛的学生共有   人,并把条形统计图补充完整;

(2)扇形统计图中,m=   n=   C等级对应扇形有圆心角为   度;

(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.

查看答案和解析>>

同步练习册答案