精英家教网 > 初中数学 > 题目详情

【题目】阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.

下面是运用“截长法”证明CD=AB+BD的部分证明过程.

证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.

∵M是的中点,

∴MA=MC

任务:(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图(3),已知等边△ABC内接于⊙O,AB=2,D为⊙O上 一点, ,AE⊥BD与点E,则△BDC的周长是

【答案】(1)证明见解析;(2)

【解析】试题分析: (1)首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;

(2)方法一、首先证明△ABF≌ACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案.

方法二、先求出BE,再用(1)的结论得出BE=CD+DE,即可得出结论.

试题解析:

(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MCMG.

M的中点,

∴MA=MC.

在△MBA和△MGC

∴△MBA≌△MGC(SAS),

∴MB=MG,

又∵MD⊥BC,

∴BD=GD,

∴DC=GC+GD=AB+BD;

(2)解:方法一、如图3,截取BF=CD,连接AF,AD,CD,

由题意可得:AB=AC,∠ABF=∠ACD,

在△ABF和△ACD

∴△ABF≌ACD(SAS),

∴AF=AD,

∵AE⊥BD,

∴FE=DE,则CD+DE=BE,

∵∠ABD=45°,

BE=

则△BDC的周长是2+2

故答案为:2+2

方法二、∵△ABC是等边三角形,

∴BC=AB=2,∠ABC=∠ACB,

∴由(1)的结论得,BE=DE+CD,

Rt△ABD中,∠ABD=45°,AB=2,

BE=

DE+CD=

∴则△BDC的周长是BC+BD+CD=BC+BE+DE+CD=2+2

故答案为:2+2

点睛: 此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列计算正确的是( )
A.x2+x2=x4
B.x8÷x2=x4
C.x2x3=x6
D.(﹣x)2﹣x2=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:x2﹣2x+1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】过一点可以而且只可以画一条直线与已知直线平行 (填“对”或“错”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是(  )

A. ①② B. ①②④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行于x轴的直线AC分别交抛物线x≥0)与x≥0)于BC两点,过点Cy轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 中, 平分 于点 .

(1)求 的度数.
(2)求证: .

查看答案和解析>>

同步练习册答案