【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.
【答案】(1)抛物线的解析式为y=﹣x2+2x+3;(2)当t=1或t=时,△PQA是直角三角形;(3)点F的坐标为(2,3).
【解析】试题分析:(1)先利用直线解析式确定A点和B点坐标,然后利用待定系数法求抛物线的解析式;
(2)OP=t,AQ=t,则PA=3-t,先判断∠QAP=45°,讨论:当∠PQA=90°时,如图①,利用等腰直角三角形的性质得PA=AQ,即3-t=t;当∠APQ=90°时,如图②,利用等腰直角三角形的性质得AQ=AP,即t=(3-t),然后分别解关于t的方程即可;
(3)如图③,延长FQ交x轴于点H,设点P的坐标为(t,0),则点E的坐标为(t,-t+3),易得△AQH为等腰直角三角形,则AH=HQ=AQ=t,则可表示出点Q的坐标为(3-t,t),点F的坐标为[3-t,-(3-t)2+2(3-t)+3)],所以FQ=-t2+3t,再证明四边形PQFE为平行四边形得到EP=FQ.即3-t=3t-t2,然后解方程求出t即可得到点F的坐标.
试题解析:(1)∵y=﹣x+3与x轴交于点A,与y轴交于点B,
∴当y=0时,x=3,即A点坐标为(3,0),当x=0时,y=3,即B点坐标为(0,3).
∵将A(3,0),B(0,3)代入得: ,解得,
∴抛物线的解析式为y=﹣x2+2x+3.
(2)∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
如图①所示:∠PQA=90°时.
设运动时间为t秒,则QA=t,PA=3﹣t.
在Rt△PQA中, ,即.
解得:t=1.
如图②所示:∠QPA=90°时.
设运动时间为t秒,则QA=t,PA=3﹣t.
在Rt△PQA中, ,即.
解得:t=.
综上所述,当t=1或t=时,△PQA是直角三角形.
(3)如图③所示:
设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t.点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),即F(3﹣t,4t﹣t2),则FQ=4t﹣t2﹣t=3t﹣t2.
∵EP∥FQ,EF∥PQ,
∴四边形EFQP为平行四边形.
∴EP=FQ,即3﹣t=3t﹣t2.
解得:t1=1,t2=3(舍去).
将t=1代入得点F的坐标为(2,3).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°, ∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,又分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D.
求证:(1)点D在AB的中垂线上.
(2)当CD=2时,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,
n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.
(1) 若m=-8,n =4,直接写出E、F的坐标;
(2) 若直线EF的解析式为,求k的值;
(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店新进一种台灯.这种台灯的成本价为每个30元,经调查发现,这种台灯每天的销售量y(单位:个)是销售单价x(单位:元)(30≤x≤60)的一次函数.
x | 30 | 35 | 40 | 45 | 50 |
y | 30 | 25 | 20 | 15 | 10 |
(1)求销售量y与销售单价x之间的函数表达式;
(2)设这种台灯每天的销售利润为w元.这种台灯销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,四边形ABCD为平行四边形,AD=a,AC为对角线,BM∥AC,过点D作 DE∥CM,交AC的延长线于F,交BM的延长线于E.
(1)求证:△ADF≌△BCM;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,如图所示A(﹣2,1),B(﹣4,1),C(﹣1,4).
(1)△ABC向上平移一个单位,再向左平移一个单位得到△A1B1C1,那么C的对应点C1的坐标为_____;P点到△ABC三个顶点的距离相等,点P的坐标为______;
(2)△ABC关于第一象限角平分线所在的直线作轴对称变换得到△A2B2C2,那么点B的对应点B2的坐标为______;
(3)△A3B3C3是△ABC绕坐标平面内的Q点顺时针旋转得到的,且A3(1,0),B3(1,2),C3(4,﹣1),点Q的坐标为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com