精英家教网 > 初中数学 > 题目详情

【题目】如图,P是正方形ABCD对角线AC上一点,点EBC上,且PE=PB

1)求证:PE=PD

2)连接DE,试判断∠PED的度数,并证明你的结论.

【答案】1)见解析(2∠PED45°.

【解析】试题(1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角线可得∠ACB=∠ACD,然后利用边角边证明△PBC△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.

试题解析:(1四边形ABCD是正方形,

∴BC=CD∠ACB=∠ACD

△PBC△PDC中,

∴△PBC≌△PDCSAS),

∴PB=PD

∵PE=PB

∴PE=PD

2)判断∠PED=45°

四边形ABCD是正方形,

∴∠BCD=90°

∵△PBC≌△PDC

∴∠PBC=∠PDC

∵PE=PB

∴∠PBC=∠PEB

∴∠PDC=∠PEB

∵∠PEB+∠PEC=180°

∴∠PDC+∠PEC=180°

在四边形PECD中,∠EPD=360°﹣∠PDC+∠PEC﹣∠BCD=360°﹣180°﹣90°=90°

∵PE=PD

∴△PDE是等腰直角三角形,

∴∠PED=45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论: ①b<1;②c<2;③0<m< ;④n≤1.
则所有正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.

(1)尝试探究:
结论1:DM、MN的数量关系是
结论2:DM、MN的位置关系是
(2)猜想论证:证明你的结论.
(3)拓展:如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,(1)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC、BD交于点O,CEBD,DEAC.

(1)证明:四边形OCED为菱形;

(2)若AC=4,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组数中,结果相等的是(
A.﹣12与(﹣1)2
B. ??
C.﹣|﹣2|与﹣(﹣2)
D.(﹣3)3与﹣33

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】珠海市某中学开展主题为我爱阅读的专题调查活动,为了解学校1200名学生一年内阅读书籍量,随机抽取部分学生进行统计,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据图表,解答下面的问题:

分组

频数

频率

0≤x<5

4

0.08

5≤x<10

14

0.28

10≤x<15

16

a

15≤x<20

b

c

20≤x<25

10

0.2

合计

d

1.00

(1)a=   ,b=   c=   

(2)补全频数分布直方图;

(3)根据该样本,估计该校学生阅读书籍数量在15本或15本以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则SADE:SCDB的值等于(
A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

同步练习册答案