【题目】已知点A(1,m),B(2,m﹣n)(n>0)在同一个函数的图象上,则这个函数可能是( )
A.y=xB.y=﹣C.y=x2D.y=﹣x2
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线的顶点坐标为(0,1)且经过点A(1,2),直线y=3x﹣4经过点B(,n),与y轴交点为C.
(1)求抛物线的解析式及n的值;
(2)将直线BC绕原点O逆时针旋转45°,求旋转后的直线的解析式;
(3)如图2将抛物线绕原点O顺时针旋转45°得到新曲线,新曲线与直线BC交于点M、N,点M在点N的上方,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当△AOD是直角三角形且∠ADO=90°时,求α的度数;
(3)当α=110°或125°或140°时,判断△AOD的形状,请选择其中一种情况说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在正方形ABCD中,E,F,G,H分别是AD,DC,BC,CD上的点,连接EF,GH.
①若EF⊥GH,则必有EF=GH.
②若EF=GH,则必有EF⊥GH.
判断上述两个命题是否成立,若成立,请说明理由;若不成立,请举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)
如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.
(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;
(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,矩形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)只需添加一个条件,即______,可使四边形BEDF为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线∥AB,与 AB 之间的距离为 2 ,C、D 是直线上两个动点(点 C在 D 点的左侧),且 AB=CD=5.连接 AC、BC、BD,将△ABC 沿 BC 折叠得到△A′BC.若以 A′、C、B、D 为顶点的四边形为矩形,则此矩形相邻两边之和为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com