【题目】如图,在直角坐标系中,直线y=﹣x﹣1与x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=x2+bx+c与x轴分别交于点A、C,直线x=﹣1与x轴交于点D.
(1)求抛物线的解析式;
(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;
(3)若点Q在第三象限内,且tan∠AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.
【答案】(1)y=x2+2x﹣3;(2)存在;点P坐标为(﹣1,)或(-,-);
(3)存在,CQ最小值为.
【解析】
(1)根据直线y=﹣x﹣1易求得A点坐标,由抛物线的对称性可求得C点坐标,然后写出抛物线的交点式即可;
(2)根据题意可设点P的坐标为(a,﹣a﹣1),分△AOB∽△APD和△AOB∽△APD两种情况,第一种情况直接根据相似三角形对应边成比例即可求得结果,第二种情况先过点P作PE⊥x轴于点E,则△APE∽△PED,再根据相似三角形对应边成比例即可求得结果;
(3)如图,取点F(﹣1,﹣1),过点ADF作圆,则点E(﹣2,﹣)为圆心,因为tan∠AFD=2,
则连CE交⊙E于点Q,则CQ为满足条件的最小值,再根据两点之间的距离公式求得CE的长,然后减去圆的半径即可得解.
(1)∵直线y=﹣x﹣1与x轴交于A点,
∴点A坐标为(﹣3,0),
又∵直线x=﹣1为对称轴,
∴点C坐标为(1,0),
∴抛物线解析式为:y=(x+3)(x﹣1)=x2+2x﹣3;
(2)存在;
由已知,点D坐标为(﹣1,0),点B坐标为(0,﹣1),
设点P的坐标为(a,﹣a﹣1),
①当△AOB∽△ADP时,
,即,
解得:a=﹣1;
点P坐标为(﹣1,);
②当△AOB∽△APD时,
过点P作PE⊥x轴于点E,
则△APE∽△PED,
∴PE2=AEED,
∴(﹣a﹣1)2=(a+3)(﹣a﹣1),
解得a1=﹣3(舍去),a2=﹣,
∴点P坐标为(﹣,﹣);
(3)存在,CQ最小值为;
如图,取点F(﹣1,﹣1),过点ADF作圆,则点E(﹣2,﹣)为圆心
∵tan∠AFD=2,
∴弧AFD(A、D除外)上的点都是满足条件的Q点,
则连CE交⊙E于点Q,则CQ为满足条件的最小值,
此时CE=,
∵⊙E半径为,
∴CQ最小值为.
科目:初中数学 来源: 题型:
【题目】如图1,点、分别是边长为的等边边、上的动点,点从点向点运动,点从点向点运动,它们同时出发,且它们的速度都为,运动的时间为.
(1)当时,求的度数;
(2)当为何值时,是直角三角形?
(3)如图2,若点、在运动到终点后继续在射线、上运动,直线、交点为,则变化吗?若变化,则说明理由,若不变,则求出它的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。
(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点为的中点,点、分别在、上,且,下列结论:①是等腰直角三角形;②;③;④.其中正确的是( )
A.①②④B.②③④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有一,且,,,已知是由旋转得到的.
请写出旋转中心的坐标是________,旋转角是________度;
设线段所在直线表达式为,试求出当满足什么要求时,;
点在轴上,点在直线上,要使以、、、为顶点的四边形是平行四边形,求所有满足条件点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com