【题目】(12分)如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.
【答案】(1)(x, );
(2)当x=2时,S有最大值,最大值是;
(3)x的值是2秒或秒.
【解析】试题(1)由勾股定理求出OB,作NP⊥OA于P,则NP∥AB,得出△OPN∽△OAB,得出比例式,求出OP、PN,即可得出点N的坐标;
(2)由三角形的面积公式得出S是x的二次函数,即可得出S的最大值;
(3)分两种情况:①若∠OMN=90°,则MN∥AB,由平行线得出△OMN∽△OAB,得出比例式,即可求出x的值;
②若∠ONM=90°,则∠ONM=∠OAB,证出△OMN∽△OBA,得出比例式,求出x的值即可.
试题解析:解:(1)根据题意得:MA=x,ON=1.25x,
在Rt△OAB中,由勾股定理得:OB==5,
作NP⊥OA于P,如图1所示:
则NP∥AB,
∴△OPN∽△OAB,
∴,
即,
解得:OP=x,PN= ,
∴点N的坐标是(x, );
(2)在△OMN中,OM=4﹣x,OM边上的高PN= ,
∴S=OMPN=(4﹣x) =﹣ +x,
∴S与x之间的函数表达式为S=﹣ +x(0<x<4),
配方得:S=﹣ +,
∵﹣<0,
∴S有最大值,
当x=2时,S有最大值,最大值是;
(3)存在某一时刻,使△OMN是直角三角形,理由如下:
分两种情况:①若∠OMN=90°,如图2所示:
则MN∥AB,
此时OM=4﹣x,ON=1.25x,
∵MN∥AB,
∴△OMN∽△OAB,
∴,
即,
解得:x=2;
②若∠ONM=90°,如图3所示:
则∠ONM=∠OAB,
此时OM=4﹣x,ON=1.25x,
∵∠ONM=∠OAB,∠MON=∠BOA,
∴△OMN∽△OBA,
∴,
即,
解得:x=;
综上所述:x的值是2秒或秒.
科目:初中数学 来源: 题型:
【题目】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是( )
A. ①②③ B. ①②⑤ C. ②③④ D. ②④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.
(1)求此抛物线的解析式;
(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?
(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD满足AB:BC=1: ,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为( )
A. 4 B. 4 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1) 求证:CF=AD;
(2) 若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求完成下列各小题.
(1)解方程:x2+6x+2=2x+7;
(2)如图是反比例函数y=在第三象限的图案,点M在该图象上,且点M到点x轴,y轴的距离都等于|k|,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数(k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=-x+2与两坐标轴分别交于A、B两点,⊙C的圆心坐标为(﹣2,0),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积S的取值范围是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com