精英家教网 > 初中数学 > 题目详情

【题目】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点DC出发,沿线段CO1个单位/秒的速度向终点O运动,过点DOC的垂线交BC于点E,作EF∥OC,交抛物线于点F.

(1)求此抛物线的解析式;

(2)小明在探究点D运动时发现,当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?

(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.

【答案】(1)y=﹣x2+2x+3(2)点D为OC的中点时,线段EF最长(3)当t=2或或3时,△CDF为等腰三角形

【解析】

(1)由于已知抛物线与x轴交点坐标,则设交点式y=a(x+1)(x-3),然后把C点坐标代入求出a即可得到抛物线解析式;
(2)先利用待定系数法求出直线BC的解析式,再设E(t,-t+3),接着表示出D(0,-t+3),F(t,-t2+2t+3),然后用t表示出EF的长,再利用二次函数的性质确定EF最大时的t的值,从而判断点D是否为OC的中点;
(3)先由C(0,3),D(0,-t+3),F(t,-t2+2t+3)和利用两点间的距离公式表示出CD2,CF2,DF2,然后分类讨论:当CD=CFFC=FDDC=DF时得到关于t的方程,接着分别解关于t的方程即可.

(1)设抛物线的解析式为y=a(x+1)(x﹣3),

把C(0,3)代入得a1(﹣3)=3,解得a=﹣1,

所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3;

(2)他猜想正确.理由如下:

设直线BC的解析式为y=mx+n,

把C(0,3),B(3,0)代入得 ,解得,则直线BC的解析式为y=﹣x+3,

设E(t,﹣t+3),则D(0,﹣t+3),F(t,﹣t2+2t+3),

所以EF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣2+

当t=时,EF最大,最大值为

此时D点坐标为(0,),

所以点D为OC的中点时,线段EF最长;

(3)∵C(0,3),D(0,﹣t+3),F(t,﹣t2+2t+3),

∴CD2=(﹣t+3﹣3)2=t2 , CF2=t2+(﹣t2+2t+3﹣3)2=t2+(﹣t2+2t)2 , DF2=t2+(﹣t2+2t+3+t﹣3)2=t2+(﹣t2+3t)2

当CD=CF时,即t2=t2+(﹣t2+2t)2 , 解得t1=0,t2=2;

当FC=FD,即t2+(﹣t2+2t)2=t2+(﹣t2+3t)2 , 解得t1=0,t2=

当DC=DF时,即t2=t2+(﹣t2+3t)2 , 解得t1=0,t2=3;

综上所述,当t=2或或3时,△CDF为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图,则方程ax2+bx+c=m有实数根的条件是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班同学上学期全部参加了捐款活动,捐款情况如下统计表:

金额(元)

5

10

15

20

25

30

人数(人)

8

12

10

6

2

2

(1)求该班学生捐款额的平均数和中位数;

(2)试问捐款额多于15元的学生数是全班人数的百分之几?

(3)已知这笔捐款是按3:5:4的比例分别捐给灾区民众、重病学生、孤老病者三种被资助的对象,问该班捐给重病学生是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于某一点成中心对称的两个图形,下列说法中,正确的个数有( )

①这两个图形完全重合;②对称点的连线互相平行③对称点所连的线段相等;④对称点的连线相交于一点;⑤对称点所连的线段被同一点平分⑥对应线段互相平行或在同一直线上,且一定相等.

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图4所示的是桥梁的两条钢缆具有相同的抛物线形状.按照图中建立的直角坐标系,右面的一条抛物线的解析式为y=x2-4x+5表示,而且左右两条抛物线关于y轴对称,则左面钢缆的表达式为_________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:

(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;

(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1为坐标原点,矩形的顶点,将矩形绕点按顺时针方向旋转一定的角度得到矩形,此时边、直线分别与直线交于点

1)连接,在旋转过程中,当时,求点坐标.

2)连接,当时,若为线段中点,求的面积.

3)如图2,连接,以为斜边向上作等腰直角,请直接写出在旋转过程中的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,在直角坐标系中,Rt△OAB的直角顶点Ax轴上,OA=4AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒125个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0x4)时,解答下列问题:

1)求点N的坐标(用含x的代数式表示);

2)设△OMN的面积是S,求Sx之间的函数表达式;当x为何值时,S有最大值?最大值是多少?

3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

同步练习册答案