精英家教网 > 初中数学 > 题目详情
6.如图,AB是⊙O的直径,AM、BN是⊙O的切线,DE切⊙O于E,交AM于D,交BN于C.
(1)求证:∠DOC=90°;
(2)如果OD=3cm,OC=4cm,求⊙O的直径AB的长.

分析 (1)根据切线长定理得到OD平分∠ADE,OC平分∠BCE,即∠ODC=∠ADC,∠OCD=∠BCD,再根据切线的性质AB⊥AM,AB⊥BN,则AM∥BN,利用平行线的性质得∠ADC+∠BCD=180°,所以∠ODC+∠OCD=90°,则根据三角形内角和可就是出∠DOC=90°;
(2)连接OE,如图,利用勾股定理可就是出CD=5,再根据切线长定理得到OE⊥DC,则利用面积法克就是出OE,从而得到AB的长.

解答 (1)证明:∵AM、BN是⊙O的切线,DE切⊙O于E,
∴OD平分∠ADE,OC平分∠BCE,
∴∠ODC=∠ADC,∠OCD=∠BCD,
∵AM、BN是⊙O的切线,
∴AB⊥AM,AB⊥BN,
∴AM∥BN,
∴∠ADC+∠BCD=180°,
∴∠ODC+∠OCD=90°,
∴∠DOC=90°;
(2)解:连接OE,如图,在Rt△OCD中,∵OD=3,OC=4,
∴CD=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵DE切⊙O于E,
∴OE⊥DC,
∵OE•CD=OD•OC,
∴OE=$\frac{3×4}{5}$=$\frac{12}{5}$,
∴AB=2OE=$\frac{24}{5}$.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.某袜业公司向上海世博会申请了在自己生产的袜子上印上海世博会会徽的专利权,但组委会只允许这种袜子在5月1日至5月31日这一个月内在全国各地生产销售.生产这种袜子的成本为每双5元,该袜业公司经过一段时间调查与分所后,发现这种袜子在5月份销售期间,每双袜子的销售单价x(元)和日均销售量y(万双)满足如图所示关系;日均各种费用等固定成本为20万元.
(1)直接写出y关于x的函数解析式y=-4x+76;
(2)求日均毛利润W万元关于x的函数解析式;(毛利润=钠售利润-固定成本)
(3)若该袜业公司在申请专利和投入生产设备上的总投资为4000万元,请问:在5月份的生产销售后,该公司若想获得最大总利润,这种袜子每双应定价多少元?并求出最大总利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.
(1)用一个单位长度表示1千米,以东为正方向,小明家为原点,画出数轴并在数轴上标明小明家A,小彬家B,小红家C,中心广场D的位置.
(2)小彬家距离中心广场多远?
(3)小明一共跑了多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图中以点A为端点的线段有4条,分别是AB、AE、AD、AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC为等边三角形,P是直线AB左侧一点,连接PA、PB、PC,PC与AB相交于点D,∠BPC=60°.
(1)求证:∠PBA=∠PCA;
(2)求证:PC=PA+PB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,河堤横断面迎水坡AB的坡比是1:$\sqrt{3}$,堤高BC=10m,那么此拦水坝斜坡AB的坡度及坡面AB的长分别为(  )
A.$\frac{\sqrt{3}}{3}$,20mB.$\sqrt{3}$,10$\sqrt{3}$mC.30°,20mD.60°,10$\sqrt{3}$m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,CE⊥AB于E,BD⊥AC于D,BD、CE交于点O,且OD=OE,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,∠1=∠2,且∠2:∠3:∠4=1:2:3,求∠2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.目前,哈尔滨市区正在进行道路的全面改造,有关部门要求司机开车时遵章行驶,在下列交通标志中,不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案