【题目】某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:
(1)本次抽样调查的书籍有多少本?请补全条形统计图;
(2)求出图1中表示文学类书籍的扇形圆心角度数;
(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1 , 将C1关于点B的中心对称得C2 , C2与x轴交于另一点C,将C2关于点C的中心对称得C3 , 连接C1与C3的顶点,则图中阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究证明:
(1)如图1,在△ABC中,AB=AC,点E是BC上的一个动点,EG⊥AB,EF⊥AC,CD⊥AB,点G,F,D分别是垂足.求证:CD=EG+EF;
猜想探究:
(2)如图2,在△ABC中,AB=AC,点E是BC的延长线上的一个动点,EG⊥AB于G,EF⊥AC交AC延长线于F,CD⊥AB于D,直接猜想CD、EG、EF之间的关系为;
(3)如图3,边长为10的正方形ABCD的对角线相交于点O、H在BD上,且BH=BC,连接CH,点E是CH上一点,EF⊥BD于点F,EG⊥BC于点G,则EF+EG= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF , S△BEN和S四边形MNHG的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是( )
A.4
B.4
C.8
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年6月28日,“合福高铁”正式开通,对南平市的旅游产业带来了新的发展机遇.某旅行社抽样调查了2015年8月份该社接待来南平市若干个景点旅游的人数,并将调查结果绘制成如下两幅不完整的统计图表,请根据图表信息回答下列问题:
景点 | 频数 | 频率 |
九曲溪 | 116 | 0.29 |
归宗岩 | 0.25 | |
天成奇峡 | 84 | 0.21 |
溪源峡谷 | 64 | 0.16 |
华阳山 | 36 | 0.09 |
(1)此次共调查人,
(2)补全条形统计图;
(3)由上表提供的数据可以制成扇形统计图,则“天成奇峡”所对扇形的圆心角为°;
(4)该旅行社预计今年8月份将要接待来以上景点的游客约2 500人,根据以上信息,请你估计去“九曲溪”的游客大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中, =a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.
(1)如图1,当DH=DA时,填空:∠HGA=度;
(2)如图1,当DH=DA时,若EF∥HG,求∠AHE的度数,并求此时的最小值;
(3)如图3,∠AEH=60°,EG=2BG,连接FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B (2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com