【题目】如图,在等腰Rt△ABC中,∠ACB=90°,AB=14.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,请直接写出BD与DO的数量关系.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②如图3,若DG∥BC,EC=2,求的值.
【答案】(1)BD=2OD,见解析;(2)①DG=;②.
【解析】
(1)如图1中,首先证明CD=BD=AD,再证明四边形ADFC是平行四边形即可解决问题;
(2)①作DT⊥BC于点T,FH⊥BC于H.证明DG是△ABF的中位线,想办法求出BF即可解决问题;
(3)如图3,取AB中点O,连接OG,OC,BF,GE,通过证明△DGE∽△FBD,可得∠DGE=∠DBF=90°,,由等腰三角形的性质可得GE=EC=2,可求DB的值,即可求解.
解:(1)如图1中,
∵CA=CB,∠ACB=90°,BD=AD,
∴CD⊥AB,CD=AD=BD,
∵CD=CF,
∴AD=CF,
∵∠ADC=∠DCF=90°,
∴AD∥CF,
∴四边形ADFC是平行四边形,
∴OD=OC,
∵BD=2OD.
(2)①解:如图2中,作DT⊥BC于点T,FH⊥BC于H.
由题意:BD=AD=CD=7,BC=BD=14,
∵DT⊥BC,
∴BT=TC=7,
∵EC=2,
∴TE=5,
∵∠DTE=∠EHF=∠DEF=90°,
∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,
∴∠TDE=∠FEH,
∵ED=EF,
∴△DTE≌△EHF(AAS),
∴FH=ET=5,
∵∠DBE=∠DFE=45°,
∴B,D,E,F四点共圆,
∴∠DBF+∠DEF=90°,
∴∠DBF=90°,
∵∠DBE=45°,
∴∠FBH=45°,
∵∠BHF=90°,
∴∠HBF=∠HFB=45°,
∴BH=FH=5,
∴BF=5,
∵∠ADC=∠ABF=90°,
∴DG∥BF,
∵AD=DB,
∴AG=GF,
∴DG=BF=;
②如图3,取AB中点O,连接OG,OC,BF,GE,
∵∠DBE=∠DFE=45°,
∴点D,点B,点F,点E四点共圆,
∴∠DEF+∠DBF=180°,∠DEB=∠DFB,
∴∠DBF=90°,
∵点O是AB中点,点G是AF中点,
∴OG∥BF,BF=2OG,
∴∠AOG=90°,且AO=BO,
∴点G是AB垂直平分线上一点,
∵AC=BC,
∴点C是AB垂直平分线上一点,
∴点O,点G,点C共线,
∴∠ACO=∠BCO=45°,
∵DG∥BC,
∴∠ODG=∠OBC=45°,∠OCB=∠OGD=45°,∠GDE=∠BED,
∴∠OGD=∠ODG=45°,∠GDE=∠BFD,
∴OD=OG,
∴DG=OG,
∴,,
∴,且∠GDE=∠BFD,
∴△DGE∽△FBD,
∴∠DGE=∠DBF=90°,,
∵DG∥BC,
∴∠DGE=∠GEC=90°,且∠OCB=45°,
∴∠EGC=∠GCE=45°,
∴GE=EC=2,
∴BD=2,
∴AD=AB﹣BD=12,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.
(1)线段MP的长为 (用含t的代数式表示).
(2)当线段MN与边BC有公共点时,求t的取值范围.
(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.
(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:DF是⊙O的切线;
(2)已知BD=,CF=2,求DF和BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,AB⊥BC,点P是边AD上一动点,将△ABP沿BP折叠得到△BEP,连接DE,CE,已知AB=4,AD=3,BC=6,则△CDE面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随机抽取某小吃店一周的营业额(单位: 元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合计 |
(1)分析数据,填空:这组数据的平均数是 元,中位数是 元,众数是 元.
(2)估计一个月(按天计算)的营业额,星期一到星期五营业额相差不大,用这天的平均数估算合适么?简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.
(1)求V与t之间的函数表达式;
(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?
(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com