【题目】如图,△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:DF是⊙O的切线;
(2)已知BD=,CF=2,求DF和BG的长.
【答案】(1)见解析;(2)DF=4,BG=
【解析】
(1)连接OD,根据圆周角定理得到AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DF⊥AC可得OD⊥DF,即可得证;
(2)连接BE.BE∥DF,可得DF是△BEC的中位线,设AE=x,则AC=AB=x+4,根据勾股定理列方程可得x的值,证明△GOD∽△GAF,列比例式可得BG的长.
(1)∵AB是⊙O的直径,
∴∠ADB=90°,
连接OD,
∵∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
又∵OA=OB,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是圆O的切线;
(2)连接BE.
∵CD=BD=2,
∵CF=2,
∴,
∵AB是直径,
∴∠AEB=∠CEB=90°,
∴BE⊥AC,
∵DF⊥AC,
∴DF∥BE,
∴EF=FC=2,
∴BE=2DF=8,
设AE=x,则AC=AB=x+4
由勾股定理得:AB2=AE2+BE2,
(x+4)2=82+x2,
x=6,
∴AE=6,AB=4+6=10,
∵OD∥AF,
∴△GOD∽△GAF,
∴,
∴,
∴BG=.
科目:初中数学 来源: 题型:
【题目】现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.
(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是 ,“和谐距离”是 ;
(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;
(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒,若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长,设剪去的小正方形边长是xcm,根据题意可列方程,化为一般式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,AB=14.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,请直接写出BD与DO的数量关系.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②如图3,若DG∥BC,EC=2,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.
(1)求证:是的切线;
(2)若,,求的边上的高.
(3)在(2)的条件下,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式及点B坐标;
(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数(k≠0)的值时,写出自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com