精英家教网 > 初中数学 > 题目详情

【题目】熊组长准备为我们年级投资1万元围一个矩形的运动场地(如图),其中一边靠墙,另外三边选用不同材料建造且三边的总长为,墙长,平行于墙的边的费用为200/,垂直于墙的边的费用150/,设平行与墙的边长为

1)若运动场地面积为,求的值;

2)当运动场地的面积最大时是否会超了预算.

【答案】1;(2)不会

【解析】

(1)根据矩形的面积公式列方程求解可得;
(2)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.

解:(1)根据题意,得:()x=300
解得:x=20x=30
∵墙的长度为24m
x=20
(2)设菜园的面积是S
S=( )x
= x2+25x
= (x25)2+
<0
∴当x<25时,Sx的增大而增大,
x24
∴当x=24时,S取得最大值为312,此时直于墙的边的长为312÷24=13
∴总费用=24×200+26×150=8700<10000
∴没有超过预算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC中,OA8AB6,点D在边BC上,且CD3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线yax2+ax+ca≠0)与x轴的交点为ABAB的左边)且AB3,与y轴交于C,若抛物线过点E(﹣12).

1)求抛物线的解析式;

2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;

3)若D为原点关于A点的对称点,F点坐标为(01.5),将△CEF绕点C旋转,在旋转过程中,线段DEBF是否存在某种关系(数量、位置)?请指出并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.

(1)如果P,Q分别从A,B同时出发,那么几秒后,PBQ的面积等于6cm2

(2)在(1)中,PQB的面积能否等于8cm2?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴交于点A和点B,与y轴交于点C,且OA=2OB=OC=6,点D是抛物线的顶点,过点Dx轴的垂线,垂足为E

1)求抛物线的解析式及点D的坐标;

2)连接BD,若点F是抛物线上的动点,当∠FBA=BDE时,求点F的坐标:

3)若点M是抛物线上的动点,过点MMNx轴与抛物线交于点N,点Px轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,EAB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AMDE的位置关系.

探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:

证明:∵BE=AB,∴AE=2AB.

∵AD=2AB,∴AD=AE.

四边形ABCD是矩形,∴AD∥BC.

.(依据1)

∵BE=AB,∴.∴EM=DM.

AM△ADEDE边上的中线,

∵AD=AE,∴AM⊥DE.(依据2)

∴AM垂直平分DE.

反思交流:

(1)①上述证明过程中的依据1”“依据2”分别是指什么?

试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;

(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;

探索发现:

(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校. 图中的折线表示清清的行程s()与所花时间t ()之间的函数关系. 下列说法错误的是(

A. 清清等公交车时间为3分钟 B. 清清步行的速度是80/

C. 公交车的速度是500/ D. 清清全程的平均速度为290/

查看答案和解析>>

同步练习册答案