分析 (1)根据题意可以得到△ACD≌△AED,由DE垂直平分AB,可得AE=BE,从而可以得到AC与AB的关系,从而可以解答本题.
(2)由∠C=90°,AD平分∠CAB,DE垂直平分AB,可得DC=DE,由(1)中∠B=30°,可以得到BD与DE的关系,从而可以得到BD与CD的关系.
解答 解:(1)∵在Rt△ABC中,∠C=90°,AD平分∠CAB,DE垂直平分AB,
∴DC=DE,∠C=∠DEA=90°,AE=BE.
在Rt△ACD和Rt△AED中
$\left\{\begin{array}{l}{DC=DE}\\{AD=AD}\end{array}\right.$
∴Rt△ACD≌Rt△AED(HL).
∴AC=AE.
∴AC=$\frac{1}{2}AB$.
∴∠B=30°.
(2)∵∠B=30°,DE⊥AB,
∴∠DEB=90°,BD=2DE.
∵在Rt△ABC中,∠C=90°,AD平分∠CAB,DE垂直平分AB,
∴DE=CD.
∴BD=2CD.
点评 本题考查三角形的全等、直角三角形中30°角所对的直角边与斜边的关系、线段垂直平分线的性质,解题的关键是找出所求问题需要的条件,灵活变化,进行解答.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com