精英家教网 > 初中数学 > 题目详情

【题目】已知菱形ABCD与线段AE,且AEAB重合.现将线段AE绕点A逆时针旋转180°,在旋转过程中,若不考虑点E与点B重合的情形,点E还有三次落在菱形ABCD的边上,设∠B=α,则下列结论正确的是(  )

A.B.C.D.

【答案】C

【解析】

通过临界值的情况结合图形分析,可知当60°< <90°时满足题意.

解:因为AEAB重合,在旋转过程中必过D点,所以需要满足AE与边BCCD有交点,此时考虑临界值位置:当AB=AC时,旋转过程经过CD两点,如图,AB=BC=ACABC为等边三角形,所以α=60°,易知当α60°时即有三个交点,而当α=90°时,菱形ABCD为正方形,此时AB不会与BC有交点(不考虑点E与点B重合的情形),∴60°< <90°

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+6与x轴,y轴分别相交于点A,B,O为坐标原点,点A的坐标为(-8,0).

(1)求k的值;

(2)若点P(x,y)是第二象限内直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x之间的函数关系式,并写出自变量的取值范围;

(3)若点P(0,m)为射线BO(B,O两点除外)上的一动点,过点P作PC⊥y轴交直线AB于C,连接PA.设△PAC的面积为S′,求S′与m的函数关系式,并写出自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如下图,则以下结论:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有两个相等的实数根.其中正确结论的个数为( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC边为直径作OBC边于点D,过点DDEAB于点EEDAC的延长线交于点F.

(1)求证:EFO的切线;

(2)EB=6,且sinCFD=,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx与反比例函数yx0)的图象相交于点D,点A为直线yx上一点,过点AACx轴于点C,交反比例函数yx0)的图象于点B,连接BD

1)若点B的坐标为(82),则k   ,点D的坐标为   

2)若AB2BC,且△OAC的面积为18,求k的值及△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,ABCD,∠ABC=60°AB=BC=4CD=3

(1)如图1,求△BCD的面积;

(2)如图2MCD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点NNQBC,垂足为Q,设NQ=nBQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:在平面直角坐标系中,已知抛物线轴交于两点(在点的右侧),与轴交于点,它的对称轴与轴交于点,直线经过两点,连接

1)求两点的坐标及直线的函数表达式;

2)探索直线上是否存在点,使为直角三角形,若存在,求出点的坐标;若不存在,说明理由;

3)若点是直线上的一个动点,试探究在抛物线上是否存在点

①使以点为顶点的四边形为菱形,若存在,请直接写出点的坐标;若不存在,说明理由;

②使以点为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,过点作直线,将绕点顺时针旋转得到(点的对应点分别为),射线分別交直线于点.

1)如图,当重合时,求的度数;

2)如图,设的交点为,当的中点时,求线段的长;

3)在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD'E'的位置(如图2所示).已知AD90厘米,DE30厘米,EC40厘米.

1)求点D'BC的距离;

2)求EE'两点的距离.

查看答案和解析>>

同步练习册答案