分析 连接BG、DH,由平行四边形的性质得出AB=CD,AD=BC,AB∥CD,由平行线的性质得出∠ABE=∠CDF,由AAS证明△ABE≌△CDF,得出BE=DF,证明四边形BHDG是平行四边形,得出对角线互相平分OG=OH,OB=OD,求出OE=OF,结论得出结论.
解答 证明:连接BG、DH,如图所示:![]()
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中,$\left\{\begin{array}{l}{∠ABE=∠CDF}&{\;}\\{∠AEB=∠CFD}&{\;}\\{AB=CD}&{\;}\end{array}\right.$,
∴△ABE≌△CDF(AAS),
∴BE=DF,
∵G、H分别为AD、BC的中点,
∴DG=BH,
∴四边形BHDG是平行四边形,
∴OG=OH,OB=OD,
∴OB-BE=OD-DF,
∴OE=OF,
即EF、GH互相平分.
点评 本题考查了平行四边形的判定与性质、全等三角形的判定与性质;证明四边形BHDG是平行四边形得出对角线互相平分是解决问题的突破口.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com