【题目】已知:如图,点
是以
为直径的
上一点,直线
与过
点的切线相交于
,点
是
的中点,直线
交直线
于点
.
![]()
(1)求证:
是
的切线;
(2)若
,
,求
的半径.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线
经过
的三个顶点,其中点
,点
,
轴,点
是直线
下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点
且与
轴平行的直线
与直线
、
分别交与点
、
,当四边形
的面积最大时,求点
的坐标;
(3)当点
为抛物线的顶点时,在直线
上是否存在点
,使得以
、
、
为顶点的三角形与
相似,若存在,直接写出点
的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,一次函数
的图象与
轴交于点
,与反比例函数
在第一象限内的图象交于点
,且点
的横坐标为
.过点
作
轴交反比例函数
的图象于点
,连接
.
(1)求反比例函数的表达式.
(2)求
的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为
米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC
![]()
(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是 ,MN与EC的数量关系是
(2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.
已知:如图1,
和
外的一点
.
![]()
求作:过点
作
的切线.
作法:如图2,
![]()
①连接
;
②作线段
的垂直平分线
,直线
交
于
;
③以点
为圆心,
为半径作圆,交
于点
和
;
④作直线
和
.
则
,
就是所求作的
的切线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图2中的图形;
(2)完成下面的证明:
证明:连接
,
,
∵由作图可知
是
的直径,
∴
(______)(填依据),
∴
,
,
又∵
和
是
的半径,
∴
,
就是
的切线(______)(填依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;
(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?
(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知抛物线
与直线
都经过
、
两点,该抛物线的顶点为C.
(1)求此抛物线和直线
的解析式;
(2)设直线
与该抛物线的对称轴交于点E,在射线
上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;
(3)设点P是直线
下方抛物线上的一动点,当
面积最大时,求点P的坐标,并求
面积的最大值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com