【题目】下列几何体中,主视图、左视图、俯视图完全相同的是( )
A.球
B.圆锥
C.圆柱
D.长方体
科目:初中数学 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).
(1)请用表格或树状图列出点P所有可能的坐标;
(2)求点P在一次函数图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:
△ABC | A(a,0) | B(3,0) | C(5,5) |
△A′B′C′ | A′(4,2) | B′(7,b) | C′(c,7) |
(1)观察表中各对应点坐标的变化,并填空:a= , b= , c=;
(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;
(3)直接写出△A′B′C′的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O(0,0),B(1,2).
(1)若点A在y轴的正半轴上,且三角形OAB的面积为2,求点A的坐标.
(2)若点A(3,0),BC∥OA,BC=OA,求点C的坐标.
(3)若点A(3,0),点D(3,﹣4),求四边形ODAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.
(1)求两次抽得相同花色的概率;
(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小李新家装修,在装修客厅时,购进彩色地砖和单色地砖共80块,共花费4000元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也铺设这两种型号的地砖共30块,且采购地砖的费用不超过1600元,那么彩色地砖最多能采购多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,OA=7,OC=18,将点C先向上平移7个单位,再向左平移4个单位,得到点B,连接AB,BC.
(1)填空:点B的坐标为;
(2)如图2,BF平分∠ABC交x轴于点F,CD平分∠BCO交BF于点D,过点F作FH⊥BF交BC的延长线于点H,试判断DC与FH的位置关系,并说明理由;
(3)若点P从点C出发以每秒2个单位长度的速度沿CO方向移动,同时点Q从点O出发以每秒1个单位长度的速度沿OA方向移动,设移动的时间为t秒(0<t<7),四边形OPBA与△OQB的面积分别记为S1,S2,是否存在一段时间,使S1<2S2?若存在,求出t的取值范围;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年海南西瓜收成良好,小华家也喜获丰收,小华家今年种植“黑美人”西瓜5亩,“无籽”西瓜20亩,共收70000千克,按市场价“黑美人”每千克2.4元,“无籽”西瓜每千克4元出售,收入264000元.
(1)小华家今年种植的“黑美人”西瓜和“无籽”西瓜亩产各多少千克?
(2)如果知道种植1亩“黑美人”西瓜的成本为3000元,1亩“无籽”西瓜的成本为4000元,小华家今年种植西瓜共赚了多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com