【题目】已知:如图1,在△ABC中,AB=AC,点 D 是边 BC 的中点.以BD为直径作⊙O,交边 AB于点P,连接PC,交AD于点E.
(1)求证:AD是⊙O的切线;
(2)当∠BAC=90°时,求证:CE=2PE;
(3)如图2,当PC是⊙O的切线,E为AD 中点,BC=8,求AD的长.
【答案】(1)证明见详解;(2)证明见详解;(3)2.
【解析】
(1)要证明AD是圆O的切线,只要证明∠BDA=90°即可;
(2)连接PD、PO,根据直径上的圆周角是直角可得PD∥AC,所以得△PBD是等腰三角形,则OD=BD,又由已知得OD=BD=DC,由平行线分线段成比例得=;
(3)连接OP,根据三角函数可求得PC,CD的长,再在Rt△ADE中利用三角函数求得DE的长,进而得出AD的长.
(1)证明:∵AB=AC,点D是边BC的中点,
∴AD⊥BD.
又∵BD是圆O直径,
∴AD是圆O的切线.
(2)证明:连接PD、PO,
∴PD∥AC,
已知△ABC中,AB=AC,∴BD=DC,
∴PB=PD,
∴OD=OB=BD=DC,
∴PE=CE,
∴=,
即CE=2PE;
(3)连接OP,
由BC=8,得CD=4,OC=6,OP=2,
∵PC是圆O的切线,O为圆心,
∴∠OPC=90°∴由勾股定理,得PC=4,
在△OPC中,tan∠OCP= =,
在△DEC中,tan∠DCE= =,DE=DC=.
∵E为AD中点,
∴AD=2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知:如图1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°.求证:Rt△ABC和Rt△A′B′C′全等.
(1)请你用“如果…,那么…”的形式叙述上述命题;
(2)如图2,将△ABC和A′B′C′拼在一起(即:点A与点B′重合,点B与点A′重合),BC和B′C′相交于点O,请用此图证明上述命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用12分钟追上甲;④乙到达终点时,甲离终点还有360米;其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD∥BC且使AD=BC,连接CD;
(2)线段AC的长为 ,CD的长为 ,AD的长为_____;
(3)△ACD为 三角形,四边形ABCD的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).
(1)如图①,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;
(2)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND. 求证:∠EMD=∠FND.
图① 图②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com