精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ADBC边上的中线,且AD=ACDEBCDEAB相交于点EECAD相交于点F

(1)求证:△ABC∽△FCD

(2)过点AAMBC于点M,求DEAM的值;

(3)SFCD=5BC=10,求DE的长.

【答案】(1)证明见解析;(2)(3)

【解析】

(1)利用DBC边上的中点,DEBC可以得到∠EBC=ECB,而由AD=AC可以得到∠ADC=ACD,再利用相似三角形的判定定理,就可以证明题目结论;

(2)根据相似三角形的性质和等腰三角形的性质定理,解答即可;

(3)利用相似三角形的性质就可以求出三角形ABC的面积,然后利用面积公式求出AM的值,结合,即可求解.

(1)DBC边上的中点,DEBC

BD=DC,∠EDB=EDC=90°,

DE=DE,

∴△BDE≌△EDCSAS

∴∠B=DCE

AD=AC

∴∠ADC=ACB

∴△ABC∽△FCD

(2)AD=ACAMDC

DM=DC

BD=DC

DEBCAMBC

DEAM

(3)过点AAMBC,垂足是M

∵△ABC∽△FCDBC=2CD

SFCD=5

SABC=20

又∵BC=10

AM=4

DEAM

DE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校王老师组织九(1)班同学开展数学活动,某天带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A的仰角为45°,斜坡与地面成60°角,CD4m,请你根据这些数据求电线杆的高AB.(结果用根号表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃粽子的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用ABCD表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

1)将两幅不完整的图补充完整;

2)本次参加抽样调查的居民有多少人?

3)若居民区有8000人,请估计爱吃D粽的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100)作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

请根据所给信息,解答下列问题:

(1)m   n   

(2)请补全频数分布直方图;

(3)若成绩在90分以上(包括90)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别为BCCD的中点,连接AEBF交于点G,将BCF沿BF对折,得到BPF,延长FPBA延长线于点Q,下列结论正确的个数是(

AE=BFAEBFsinBQP=S四边形ECFG=2SBGE

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点I为△ABC的内心,AB=4AC=3BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系xOy中,二次函数y=mx 2 +2mx4m≠0)的图象与x轴交于点AB(点A在点B的左侧),与y轴交于点C,△ABC的面积为12

1)求这个二次函数的解析式;

2)点D的坐标为(-21),点P在二次函数的图象上,∠ADP为锐角,且tanADP=2,求出点P的横坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:每个内角都相等的八边形叫做等角八边形.容易知道,等角八边形的内角都等于135°.下面,我们来研究它的一些性质与判定:

1)如图1,等角八边形ABCDEFGH中,连结BF

①请直接写出∠ABF+∠GFB的度数.

②求证:ABEF

③我们把ABEF称为八边形的一组正对边.由②同理可得:BCFGCDGHDEHA这三组正对边也分别平行.请模仿平行四边形性质的学习经验,用一句话概括等角八边形的这一性质.

2)如图2,等角八边形ABCDEFGH中,如果有ABEFBCFG,则其余两组正对边CDGHDEHA分别相等吗?证明你的结论.

3)如图3,八边形ABCDEFGH中,若四组正对边分别平行,则显然有∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.请探究:该八边形至少需要已知几个内角为135°,才能保证它一定是等角八边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,抛物线x轴交于点AC(点A在点C的左侧),与y轴交于点B,顶点为D.Q为线段BC的三等分点(靠近点C.

1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;

2)在(1)的条件下,当的面积最大时,过点E轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点DPGH构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案