【题目】已知:在平面直角坐标系xOy中,二次函数y=mx 2 +2mx-4(m≠0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,△ABC的面积为12.
(1)求这个二次函数的解析式;
(2)点D的坐标为(-2,1),点P在二次函数的图象上,∠ADP为锐角,且tan∠ADP=2,求出点P的横坐标;
【答案】(1)y=x2+x-4;(2)点P横坐标为-2或
【解析】
(1)根据对称轴坐标公式可求二次函数图象的对称轴;当x=0时,y=﹣4,可求点C的坐标为(0,﹣4),根据三角形面积公式可求AB=6.进一步得到A点和B点的坐标分别为(﹣4,0),(2,0).待定系数法可求二次函数的解析式;
(2)作DF⊥x轴于点F.分两种情况:(ⅰ)当点P在直线AD的下方时;(ⅱ)当点P在直线AD的上方时,延长P1A至点G使得AG=AP1,连接DG,作GH⊥x轴于点H,两种情况讨论可求点P1的坐标;
(1)由题意可得:该二次函数图象的对称轴为直线x=﹣1;
∵当x=0时,y=﹣4,
∴点C的坐标为(0,﹣4),
∵S△ABC=AB|yC|=12,
∴AB=6.
又∵点A,B关于直线x=﹣1对称,
∴A点和B点的坐标分别为(﹣4,0),(2,0).
∴4m+4m﹣4=0,解得m=.
∴所求二次函数的解析式为y=x2+x﹣4.
(2)如图,作DF⊥x轴于点F.分两种情况:
(ⅰ)当点P在直线AD的下方时,如图所示.
由(1)得点A(﹣4,0),点D(﹣2,1),
∴DF=1,AF=2.
在Rt△ADF中,∠AFD=90°,得tan∠ADF==2.
延长DF与抛物线交于点P1,则P1点为所求.
∴点P1的坐标为(﹣2,﹣4).
(ⅱ)当点P在直线AD的上方时,延长P1A至点G使得AG=AP1,连接DG,作GH⊥x轴于点H,如图所示.
可证△GHA≌△P1FA.
∴HA=AF,GH=P1F,GA=P1A.
又∵A(﹣4,0),P1(﹣2,﹣4),
∴点G的坐标是(﹣6,4).
在△ADP1中,
DA=,DP1=5,
AP1=2,
∴DA2+AP12=DP12
∴∠DAP1=90°.
∴DA⊥GP1.
∴DG=DP1.
∴∠ADG=∠ADP1.
∴tan∠ADG=tan∠ADP1=2.
设DG与抛物线的交点为P2,则P2点为所求.
作DK⊥GH于点K,作P2S∥GK交DK于点S.
设P2点的坐标为(x,x2+x﹣4),
则P2S=x2+x﹣4﹣1=x2+x﹣5,DS=﹣2﹣x.
由=,GK=3,DK=4,得=.
整理,得2x2+7x﹣14=0.
解得x=.
∵P2点在第二象限,
∴P2点的横坐标为x=(舍正).
综上,P点的横坐标为﹣2或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于点O.以O为圆心,OC为半径作⊙O,分别交AO,BC于点E,F.
(1)求证:AB是⊙O的切线;
(2)延长AO交⊙O于点D,连接CD,若AD=2AC,求tanD的值;
(3)在(2)的条件下,设⊙O的半径为3,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】
A.y的最大值小于0 B.当x=0时,y的值大于1
C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.
(1)求证:△ABC∽△FCD;
(2)过点A作AM⊥BC于点M,求DE:AM的值;
(3)若S△FCD=5,BC=10,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为检测“停课不停学”期间九年级学生的复习情况,进行了中考数学模拟测试并从中随机抽取了部分学生的测试成绩分成个小组,根据每个小组的人数绘制如图所示的尚不完整的频数分布直方图.
请根据信息回答下列问题:
若成绩在分的频率为,请计算抽取的学生人数并补全频数分布直方图;
在此次测试中,抽取学生成绩的中位数在______ 分数段中;
若该校九年级共有名学生,成绩在分以上的(含分)为优秀,请通过计算说明,大约有多少名学生在本次测试中数学成绩为优秀.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a>0)交x轴于A,B两点(A在B的左侧),交y轴于点C,抛物线的顶点为P,过点B作BC的垂线交抛物线于点D.
(1)若点P的坐标为(-4,-1),点C的坐标为(0,3),求抛物线的表达式;
(2)在(1)的条件下,求点A到直线BD的距离;
(3)连接DC,若点P的坐标为(-,-),DC∥x轴,则在x轴上方的抛物线上是否存在点M,使∠AMB=∠BDC?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,AB=2,点D是以A为圆心,半径为1的圆上一动点,连接CD,取CD的中点E,连接BE,则线段BE的最大值与最小值之和为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点A在抛物线y=-x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A作AC⊥l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是( )
A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.
(1)求反比例函数解析式;
(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com