精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=AC,AB的中垂线于AC所在的直线相交所得的锐角为40°,则底角∠B的大小为

【答案】65°或25°
【解析】解:①DE与线段AC相交时,如图1,
∵DE是AB的垂直平分线,∠AED=40°,
∴∠A=90°﹣∠AED=90°﹣40°=50°,
∵AB=AC,
∴∠ABC=(180°﹣∠A)=(180°﹣50°)=65°;
②DE与CA的延长线相交时,如图2,∵DE是AB的垂直平分线,∠AED=40°,
∴∠EAD=90°﹣∠AED=90°﹣40°=50°,
∴∠BAC=180°﹣∠EAD=180°﹣50°=130°,
∵AB=AC,
∴∠ABC=(180°﹣∠BAC)=(180°﹣130°)=25°,
综上所述,等腰△ABC的底角∠B的大小为65°或25°.
故答案为:65°或25°.

作出图形,分①DE与线段AC相交时,根据直角三角形两锐角互余求出∠A,再根据等腰三角形两底角相等列式计算即可得解;②DE与CA的延长线相交时,根据直角三角形两锐角互余求出∠EAD,再求出∠BAC,然后根据等腰三角形两底角相等列式计算即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】求若干个相同的不为零的有理数的除法运算叫做除方.

如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3),读作“-3 的圈 4 次方”.

一般地,把(a≠0)记作,读作“a的圈n次方”.

(1)直接写出计算结果 _____ _________ ___________

(2)我们知道有理数的减法运算可以转化为加法运算除法运算可以转化为乘法运算

请尝试将有理数的除方运算转化为乘方运算归纳如下一个非零有理数的圈 n 次方等于_____.

(3)计算 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实数a、b在数轴上的位置如图所示,下列各式成立的是( )

A.
B.a﹣b>0
C.ab>0
D.a+b>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需________根火柴(  )

A. 156 B. 157 C. 158 D. 159

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:

1y52y523y53

23x22yx)﹣3y2x2y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴、轴分别相交于点A,B,四边形ABCD是正方形,抛物线在经过A,D两点.

1求该抛物线表达式;

2连接BD,将线段BD绕着D点顺时针旋转90度,得到DB’.直接写出点B’的坐标,并判断点B’是否落在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为( )

A. (-2,-3) B. (2,-3) C. (-2,3) D. (2,3)

查看答案和解析>>

同步练习册答案