精英家教网 > 初中数学 > 题目详情

【题目】(1)如图,已知AOBCOD90°,试写出两个与图中角(直角除外)有关的结论:

()__ ____ __

()__ ____ __180°

(2)请选择(1)中的一个结论说明理由.

【答案】1AOCBODBOCAOD;(2)见解析

【解析】

(1)(i)根据∠AOB=∠DOC=90°都加上∠COB即可求出答案;
(ii)根据周角和两直角,相减即可求出答案.

(1)()AOCBOD
()BOCAOD
(2)()理由是;
∵∠AOB=∠DOC=90°
∴∠AOB+∠COB=∠DOC+∠COB
∴∠AOC=∠DOB
()理由是;
∵∠AOB=∠DOC=90°
∴∠BOC+∠AOD
=360°-90°-90°
=180°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.健身达人小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们61日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:

(1)本次调查中,一共调查了   位好友.

(2)已知A类好友人数是D类好友人数的5倍.

①请补全条形图;

②扇形图中,“A”对应扇形的圆心角为   度.

③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友61日这天行走的步数超过10000步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有以下3句话:①AB∥CD,②∠B=∠C、③∠E=∠F、请以其中2句话为条件,第三句话为结论构造命题.

(1)你构造的是哪几个命题?

(2)你构造的命题是真命题还是假命题?请加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:

(1)扇形统计图中a= , 初赛成绩为1.70m所在扇形图形的圆心角为°;
(2)补全条形统计图;
(3)这组初赛成绩的众数是 m,中位数是 m;
(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.

(1)请在图中找出与∠AOC相等的角,并说明理由;

(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB的延长线上,ACBCDAB的反向延长线上,BDDC.

(1)在图上画出点C和点D的位置;

(2)设线段AB长为x,则BC__ __AD__ __(用含x的代数式表示)

(3)AB12 cm,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解决问题时需要思考:是否解决过与其类似的问题.小明从问题1解题思路中获得启发从而解决了问题2.
(1)问题1:如图①,在正方形ABCD中,E、F是BC、CD上两点,∠EAF=45°.
求证:∠AEF=∠AEB.
小明给出的思路为:延长EB到H,满足BH=DF,连接AH.请完善小明的证明过程.
(2)问题2:如图②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D为AB中点,E、F是AC、BC边上两点,∠EDF=45°.

①求点D到EF的距离.
②若AE=a,则SDEF=(用含字母a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作其它类统计。图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。以下结论不正确的是( )

A. 由这两个统计图可知喜欢科普常识的学生有90人.

B. 若该年级共有1200名学生,则由这两个统计图可估计喜爱科普常识的学生约有360个.

C. 由这两个统计图不能确定喜欢小说的人数.

D. 在扇形统计图中,漫画所在扇形的圆心角为72°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论: ①∠AFC=120°;
②△AEF是等边三角形;
③AC=3OG;
④SAOG= SABC
其中正确的是 . (把所有正确结论的序号都选上)

查看答案和解析>>

同步练习册答案