精英家教网 > 初中数学 > 题目详情

【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.健身达人小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们61日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:

(1)本次调查中,一共调查了   位好友.

(2)已知A类好友人数是D类好友人数的5倍.

①请补全条形图;

②扇形图中,“A”对应扇形的圆心角为   度.

③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友61日这天行走的步数超过10000步?

【答案】(1)30;(2)①补图见解析;②120;③70人.

【解析】1)由B类别人数及其所占百分比可得总人数;

(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;

②用360°乘以A类别人数所占比例可得;

③总人数乘以样本中C、D类别人数和所占比例.

1)本次调查的好友人数为6÷20%=30人,

故答案为:30;

(2)①设D类人数为a,则A类人数为5a,

根据题意,得:a+6+12+5a=30,

解得:a=2,

A类人数为10、D类人数为2,

补全图形如下:

②扇形图中,“A”对应扇形的圆心角为360°×=120°,

故答案为:120;

③估计大约61日这天行走的步数超过10000步的好友人数为150×=70人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABEF,则∠ACDE满足的数量关系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD交于点OOMAB

1)若∠1=2,试判断ONCD的位置关系,并说明理由.

2)若∠1=BOC,试求∠MOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国三国时期数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ//AB,则正方形EFGH的边长为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过FDEBC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为(  )

A. 3 B. 4 C. 3.5 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.
如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.

(1)求证:四边形EFGH为平行四边形;
(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D

(1)求证:四边形CDEF是平行四边形;
(2)若BC=3,tan∠DEF=2,求BG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )

A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,已知AOBCOD90°,试写出两个与图中角(直角除外)有关的结论:

()__ ____ __

()__ ____ __180°

(2)请选择(1)中的一个结论说明理由.

查看答案和解析>>

同步练习册答案