【题目】如图,正方形ABCD的对角线AC⊥AE,射线EB交射线DC于点F,连结AF,若AF=BF,AE=4,则BE的长为_____.
【答案】
【解析】
根据题意过点E作EH⊥AB于H,由勾股定理可求CF=2BC,通过证明△BCF∽△EHB,可得BH=2EH,由勾股定理可得EH,即可求BH的长,由勾股定理可求解.
解:如图,过点E作EH⊥AB于H,
∵四边形ABCD是矩形,
∴AB=BC=CD=AD,∠CAB=45°,AB∥CD,
∵BF2=BC2+CF2,AF2=AD2+DF2=AD2+(DC+CF)2,且AF=BF,
∴AD2+(DC+CF)2=2(BC2+CF2),
∴CF=2BC,
设AB=BC=CD=AD=a,则CF=2a,
∵AB∥CD,
∴∠ABE=∠CFB,且∠BCF=∠BHE=90°,
∴△BCF∽△EHB,
∴=,
∴BH=2EH,
∵AC⊥AE,∠CAB=45°,
∴EH=AH,
∵AH2+EH2=AE2=16,
∴EH=AH=2,
∴BH=4,
∵BE2=BH2+EH2=32+8=40,
∴BE=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,有AB为斜边的等腰直角三角形ABC,其中点A(0,2),点C(﹣1,0),抛物线y=ax2+ax﹣2经过B点.
(1)求B点的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否存在点N(点B除外),使得△ACN仍然是以AC为直角边的等腰直角三角形?若存在,求点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A,B分别在x轴负半轴,y轴负半轴上,AD交y轴于点F,E为CD的中点.若OB=1,BD=2EF时,反比例函数y=的图象经过D,E两点,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,电脑绣花设计师准备在长120cm,宽8cm的矩形ABCD模板区域内设计绣花方案,现将其划分为区域Ⅰ(2个全等的五边形),区域Ⅱ(2个全等的菱形),区域Ⅲ(正方形EFGH中减去与2个菱形重合的部分),剩余为不刺绣的空白部分:点O是整副图形的对称中心EG∥AB,H,F分别为2个菱形的中心,MH=2PH,HQ=2OQ,为了美观,要求MT不超过10cm.若设OQ=x(cm),x为正整数.
(1)用含x的代数式表示区域Ⅲ的面积;
(2)当矩形ABCD内区域Ⅰ的面积最小时,图案给人的视觉感最好.求此时MN的长度;
(3)区域Ⅰ,Ⅱ,Ⅲ的刺绣方式各有不同.区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,区域Ⅱ与区域Ⅲ每平方厘米所用的针数分别为a,b针(a,b均为整数,a>b),区域Ⅲ的面积为正整数.这时整个模板的总针数为12960针,则a+b= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.
(1)如图1,当CE⊥BD时,求DE的长;
(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.
①若,求tan∠ENM;
②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,则BD=_________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com