【题目】如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.
(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D、
A、E,连接CE.
①依题意,请在图2中补全图形;
②如果BP⊥CE,BP=3,AB=6,求CE的长
(2)如图3,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,
AB=6时,根据此图求PA+PB+PC的最小值.
![]()
【答案】(1)
(2)![]()
【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;
(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.
解:(1)①补全图形如图所示;
![]()
②如图,连接BD、CD
![]()
∵△BCP沿射线CA方向平移,得到△DAE,
∴BC∥AD且BC=AD,
∵∠ACB=90°,
∴四边形BCAD是矩形,∴CD=AB=6,
∵BP=3,∴DE=BP=3,
∵BP⊥CE,BP∥DE,∴DE⊥CE,
∴在Rt△DCE中,
;
(2)证明:如图所示,
![]()
当C、P、M、N四点共线时,PA+PB+PC最小
由旋转可得,△AMN≌△APB,
∴PB=MN
易得△APM、△ABN都是等边三角形,
∴PA=PM
∴PA+PB+PC=PM+MN+PC=CN,
∴BN=AB=6,∠BNA=60°,∠PAM=60°
∴∠CAN=∠CAB+∠BAN=60°+60°=120°,
∴∠CBN=90°
在Rt△ABC中,易得![]()
∴在Rt△BCN中,
“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.
科目:初中数学 来源: 题型:
【题目】如图,已知
中,
是
边上的点,将
绕点
旋转,得到
.![]()
(1)当 ∠
=45° 时,求证:
.
(2)在(1)的条件下,猜想
,
,
有怎样的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=
的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为( )
A.89
B.90
C.92
D.93
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“低碳环保,你我同行”.今年合肥市区的增设的“小黄车”、“摩拜单车”等公共自行车
给市民出行带来了极大的方便.图①是某种公共自行车的实物图,图②是该种公共自行车的
车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,
座杆CE=15cm,且∠EAB=75°.求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:
序号 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
甲命中的环数(环) | 7 | 8 | 8 | 6 | 9 | 8 | 10 |
乙命中的环数(环) | 5 | 10 | 6 | 7 | 8 | 10 | 10 |
根据以上信息,解决以下问题:
(1)写出甲、乙两人命中环数的众数;
(2)已知通过计算器求得
=8,
≈1.43,试比较甲、乙两人谁的成绩更稳定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形APBC是圆内接四边形,∠APB=120°,PC平分∠APB,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=2![]()
①求PD的长.
②图中弧BP和线段DP、BD组成的图形面积为 (结果保留π)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据国家统计局数据显示,我国2018年全国粮食总产量约为658000000吨.其中数据658000000用科学计数法可表示为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com