精英家教网 > 初中数学 > 题目详情
11.如图,在平面直角坐标系中,边长为5的正方形ABCD斜靠在y轴上,顶点A(3,0),反比例函数y=$\frac{k}{x}$图象经过点C,将正方形ABCD绕点A顺时针旋转一定角度后,得正方形AB1C1D1,且B1恰好落在x轴的正半轴上,此时边B1C1交反比例图象于点E,则点E的纵坐标是(  )
A.$\frac{5}{2}$B.3C.$\frac{7}{2}$D.4

分析 先根据勾股定理求出OD的长,再过点C作CF⊥y轴于点F,根据ASA定理得出△CDF≌△DAO,故可得出C点坐标,求出k的值,再求出OH的长,进而可得出E点坐标.

解答 解:∵Rt△AOD中,OA=3,AD=5,
∴OD=$\sqrt{{AD}^{2}-{OA}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4.
过点C作CF⊥y轴于点F,
∵∠CDF+∠ADO=90°,∠CDF+∠DCF=90°,
∴∠DCF=∠ADO,
同理,∠CDF=∠DAO,
在△CDF与△DAO中,
$\left\{\begin{array}{l}∠DCF=∠ADO\\ CD=AD\\∠CDF=∠DAO\end{array}\right.$,
∴△CDF≌△DAO(ASA),
∴CF=OD=4,DF=OA=3,
∴C(4,7).
∵反比例函数y=图象经过点C,
∴k=4×7=28,
∴反比例函数的解析式为y=$\frac{28}{x}$.
∵OH=OA+AH=3+5=8,
∴点E的横坐标为8,
∴y=$\frac{28}{8}$=$\frac{7}{2}$,
∴点E的纵坐标是$\frac{7}{2}$.
故选C.

点评 本题考查的是反比例函数综合题,涉及到全等三角形的判定与性质、图形旋转的性质等知识,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.解下列不等式(组):
(1)$\frac{3x-2}{5}$≥$\frac{2x+1}{3}$-1;
(2)$\left\{\begin{array}{l}{7(x-5)+2(x+1)>-15}\\{\frac{2x+1}{3}-\frac{3x-1}{2}<0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,已知直线AB、CD相交于O点,OA平分∠EOC,∠EOC=60°,则∠BOD=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.为丰富群众的业余生活,我市准备组织篮球比赛,市体育局策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.解答下列问题:
(1)方案一中,y与x的函数关系式为y=8000+50x;
方案二中,当0≤x≤100时,y与x的函数关系式为y=80x,
当x>100时,y与x的函数关系式为y=100x-2000;
(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若超市购进x(x>0)件甲种玩具需要花费y元,求y与x的函数关系式;
(3)超市打算购买x件(x>20)玩具,在(2)的条件下,从甲、乙两种玩具中选购其中一种,问:当x满足什么条件时超市购进甲种玩具比购进乙种玩具更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.经国家体育总局、重庆市民政局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2013年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:
(1)将两个不完整的统计图补充完整;
(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图①,直角三角形AOB中,∠AOB=90°,AB平行于x轴,OA=2OB,AB=5,反比例函数y=$\frac{k}{x}$(x>0)经过点A.
(1)k=8;
(2)如图②,点P(x,y)中的反比例函数图象上,其中1<x<8,连接OP,过点O作OQ⊥OP,且OP=2OQ,连接PQ,设点Q坐标为(m,n),求n与m的函数解析式,并直接写出自变量m的取值范围.
(3)在(2)的条件下,若点Q坐标为(m,1),求△POQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简分式($\frac{x}{x-1}$-$\frac{x}{{x}^{2}-1}$)÷$\frac{{x}^{3}-x}{{x}^{2}-2x+1}$,若该分式的值等于$\frac{2}{3}$,求相应的x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某企业生产100台机器,准备优先发往A、B、C三地,发往A地的数量是发往B地数量的4倍,该企业到A地100km,只能用汽车运输,到B地只能用火车运输,到C地用动车运输,动车速度是火车速度的$\frac{5}{3}$倍,到C地400km,比到B地多40km,但用时少1小时,每台汽车每千米运费3元,火车运行时平均每台每小时运费240元,动车运行时每台每小时运费440元,销售部门要求运输费用控制在64000元以内,求火车和动车的速度.

查看答案和解析>>

同步练习册答案