精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 与a,b,c之间满足怎样的关系时,点P( ),Q( )就是符合要求的一对固定点?

【答案】
(1)

解:如图2所示:


(2)

证明:在图1中,过点B作BD⊥x轴,交x轴于点D.

根据题意可证△AOC∽△CDB.

.

.

∴m(5-m)=2.

∴m2-5m+2=0.

∴m是方程x2-5x+2=0的实数根.


(3)

解:方程ax2+bx+c=0(a≠0)可化为

x2+x+=0.

模仿研究小组作法可得:A(0,1),B(-)或A(0,),B(-,c)等.


(4)

解:以图3为例:P(m1,n1)Q(m2,n2),

设方程的根为x,根据三角形相似可得.=.

上式可化为x2-(m1+m2)x+m1m2+n1n2=0.

又ax2+bx+c=0,

即x2+x+=0.

比较系数可得:m1+m2=-.

m1m2+n1n2=.


【解析】(1)根据题目中给的操作步骤操作即可得出图2中的图.
(2)在图1中,过点B作BD⊥x轴,交x轴于点D.依题意可证△AOC∽△CDB.然后根据相似三角形对应边的比相等列出式子,化简后为m2-5m+2=0,从而得证。
(3)将方程ax2+bx+c=0(a≠0)可化为x2+x+=0.模仿研究小组作法即可得答案。
(4)以图3为例:P(m1,n1)Q(m2,n2),设方程的根为x,根据三角形相似可得.=.化简后为x2-(m1+m2)x+m1m2+n1n2=0.
又x2+x+=0.再依据相对应的系数相等即可求出。
【考点精析】利用根与系数的关系和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将下列各数填入相应的集合中.

—7 , 0, ,—22, -2.55555…, 3.01, +9 ,4.020020002…,+10﹪, -2.

无理数集合:{ }; 负有理数集合:{ };

正分数集合:{ }; 非负整数集合:{ };

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm6cm的两部分,则平行四边形ABCD的周长为__________________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的运算程序中若开始输入的x值为100我们发现第1次输出的结果为502次输出的结果为252018次输出的结果为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):

(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;

(2)把条形统计图补充完整;

(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.

(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.

(2)A景区与C景区之间的距离是多少?

(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABD的坐标为(1,0),(3,0),(0,1),点C在第四象限,ACB=90°,AC=BC.若ABCABC'关于点D成中心对称,则点C'的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王红有5张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最小,最小值是   

(2)从中取出2张卡片,使这2张卡片数字相除商最大,最大值是   

(3)从中取出除0以外的4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,(注:每个数字只能用一次,如:23×[1﹣(﹣2)]),请另写出一种符合要求的运算式子   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).

(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣ 上,求此时抛物线的解析式.

查看答案和解析>>

同步练习册答案