精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,点D是AC的中点,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)若∠A+∠CDB=90°,求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.

【答案】
(1)解:连接OD,

∵OA=OD,

∴∠A=∠ADO,

又∵∠A+∠CDB=90°,

∴∠ADO+∠CDB=90°,

∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,

∴BD⊥OD,

∴BD是⊙O切线


(2)解:连接DE,

∵AE是直径,

∴∠ADE=90°,

又∵∠C=90°,

∴∠ADE=∠C,

∵∠A=∠A,

∴△ADE∽△ACB,

∴AD:AC=DE:BC

又∵D是AC中点,

∴AD= AC,

∴DE= BC,

∵BC=6,∴DE=3,

∵AD:AE=4:5,

在直角△ADE中,设AD=4x,AE=5x,

那么DE=3x,

∴x=1

∴AE=5


【解析】(1)连接OD,由∠A=∠ADO,进而证得∠ADO+∠CDB=90°,而证得BD⊥OD;(2)连接DE,由AE是直径,得到∠ADE=90°,然后利用已知条件可以证明DE∥BC,从而得到△ADE∽△ACB,接着利用相似三角形的性质得到AD:AC=DE:BC,又D是AC中点,由此可以求出DE的长度,而AD:AE=4:5,在直角△ADE中,设AD=4x,AE=5x,那么DE=3x,由此求出x=1即可解决问题.
【考点精析】掌握勾股定理的概念和三角形中位线定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx+b与坐标轴分别交于点A(0,8)、B(8,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒1个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒.

(1)直接写出直线的解析式:
(2)若E点的坐标为(﹣2,0),当△OCE的面积为5 时.
①求t的值;
②探索:在y轴上是否存在点P,使△PCD的面积等于△CED的面积?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是36千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2 , 则y关于x的函数的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一坐标系中,正比例函数y=x与反比例函数 的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,圆心角∠AOB=120°,弦AB=2 cm,则OA=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集在数轴上正确表示的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:

x(单位:台)

10

20

30

y(单位:万元∕台)

60

55

50


(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求该机器的生产数量;
(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=﹣x2+(m﹣1)x+m(m为常数).
(1)该函数的图象与x轴公共点的个数是
A.0
B.1
C.2
D.1或2
(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.
(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.

查看答案和解析>>

同步练习册答案